期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
SMOTE_ENN结合AdaBoost在临床预测模型中的应用探析
1
作者 李淑琪 光彪 +2 位作者 赵玉凤 陈继东 马利 《中国卫生统计》 CSCD 北大核心 2023年第6期817-821,共5页
目的探讨SMOTE_ENN混合采样结合AdaBoost算法在不平衡临床数据分类模型中的预测效果。方法采用网格搜索,设置不同采样比例,结合真实数据应用ROS_RUS、SMOTE_RUS、SMOTE_Tomek、SMOTE_ENN四种混合采样方法,分别基于DT、SVM、AdaBoost三... 目的探讨SMOTE_ENN混合采样结合AdaBoost算法在不平衡临床数据分类模型中的预测效果。方法采用网格搜索,设置不同采样比例,结合真实数据应用ROS_RUS、SMOTE_RUS、SMOTE_Tomek、SMOTE_ENN四种混合采样方法,分别基于DT、SVM、AdaBoost三种分类算法建模并比较性能。选取Recall、F1值、AUC三个评价指标,五折交叉验证重复三次取平均值。另选取两个UCI数据集对模型进行外部验证。结果12个分类模型中,SMOTE_ENN混合采样结合AdaBoost的模型性能最优,Recall、F1值和AUC分别为0.747、0.751和0.776,且最佳采样率为50%SMOTE过采样联合70%ENN欠采样。结论SMOTE_ENN混合采样结合AdaBoost模型可有效提升HT患者不平衡数据的临床结局预测效能,且按最佳比例抽样可有效解决以往重抽样没有明确采样率的问题。经公开的UCI数据集进一步验证后,该模型可推广应用。 展开更多
关键词 smote enn ADABOOST 临床预测模型 不平衡数据
下载PDF
基于OCkNN+ENN的过采样算法研究
2
作者 张爱民 于化龙 《计算机与数字工程》 2024年第5期1275-1281,1330,共8页
类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研... 类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研究,提出了一种更加鲁棒和通用的算法:ONE-SMOTE。研究发现:使用ENN进行数据清洗,可以很好地消除数据噪声,使用基于KNN的一类分类器(OCkNN)可以探测样本空间的相对密度分布信息,并精确定位每个样本的相对密度位置以及边界。基于样本位置信息进行过采样可以很好地保持原始样本空间的密度分布。实验结果表明:该算法能有效提高数据分类的准确性。 展开更多
关键词 类不平衡学习 smote enn OCkNN 相对密度分布信息
下载PDF
基于改进混合采样和XGBoost算法的信用卡欺诈检测方法 被引量:3
3
作者 孙丹 施炜利 +3 位作者 饶兰香 孟莎莎 郭晓明 李逸伦 《计算机与现代化》 2022年第9期111-118,共8页
随着金融机构信用卡业务的快速发展,信用卡欺诈行为成为金融机构面临的严峻问题。针对金融机构信用卡数据分布不均衡问题,本文采用过采样、降采样、SMOTE+ENN、SMOTE+Tomeklin、改进的SMOTE+Tomeklin和改进的SMOTE+ENN混合采样这6种不... 随着金融机构信用卡业务的快速发展,信用卡欺诈行为成为金融机构面临的严峻问题。针对金融机构信用卡数据分布不均衡问题,本文采用过采样、降采样、SMOTE+ENN、SMOTE+Tomeklin、改进的SMOTE+Tomeklin和改进的SMOTE+ENN混合采样这6种不同采样方法对不平衡数据进行平衡处理,然后将平衡数据集输入到多种分类算法模型中进行实验比对,最后提出一种基于改进的SMOTE+ENN混合采样和XGBoost算法的信用卡欺诈行为检测模型。通过5种评价指标验证该检测方法不仅提高了信用卡欺诈行为不平衡数据的区分度,同时提高了信用卡欺诈行为检测的准确性和可行性。 展开更多
关键词 smote+enn XGBoost算法 不平衡数据 Credit Card Fraud Detection 评价指标
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部