Accurate fault diagnosis of heating,ventilation,and air conditioning(HVAC)systems is of significant importance for maintaining normal operation,reducing energy consumption,and minimizing maintenance costs.However,in p...Accurate fault diagnosis of heating,ventilation,and air conditioning(HVAC)systems is of significant importance for maintaining normal operation,reducing energy consumption,and minimizing maintenance costs.However,in practical applications,it is challenging to obtain sufficient fault data for HVAC systems,leading to imbalanced data,where the number of fault samples is much smaller than that of normal samples.Moreover,most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy.Therefore,to address this issue,a composite neural network fault diagnosis model is proposed,which combines SMOTETomek,multi-scale one-dimensional convolutional neural networks(M1DCNN),and support vector machine(SVM).This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset,achieving a balanced number of faulty and normal data.Then,it employs the M1DCNN model to extract feature information from the augmented dataset.Finally,it replaces the original Softmax classifier with an SVM classifier for classification,thus enhancing the fault diagnosis accuracy.Using the SMOTETomek-M1DCNN-SVM method,we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10.The results demonstrate the superiority of this approach,providing a novel and promising solution for intelligent building management,with accuracy and F1 scores of 98.45%and 100%for the RP-1043 dataset and experimental dataset,respectively.展开更多
The rockburst prediction becomes more and more challenging due to the development of deep underground projects and constructions.Increasing numbers of intelligent algorithms are used to predict and prevent rockburst.T...The rockburst prediction becomes more and more challenging due to the development of deep underground projects and constructions.Increasing numbers of intelligent algorithms are used to predict and prevent rockburst.This paper investigated the drawbacks of neural networks in rockburst prediction,and aimed at these shortcomings,Bayesian optimization and the synthetic minority oversampling technique+Tomek Link(SMOTETomek)were applied to efficiently develop the feedforward neural network(FNN)model for rockburst prediction.In this regard,314 real rockburst cases were collected to establish a database for modeling.The database was divided into a training set(80%)and a test set(20%).The maximum tangential stress,uniaxial compressive strength,tensile strength,stress ratio,brittleness ratio,and elastic strain energy were selected as input parameters.Bayesian optimization was implemented to find the optimal hyperparameters in FNN.To eliminate the effects of imbalanced category,SMOTETomek was adopted to process the training set to obtain a balanced training set.The FNN developed by the balanced training set received 90.48% accuracy in the test set,and the accuracy improved 12.7% compared to the imbalanced training set.For interpreting the FNN model,the permutation importance algorithm was introduced to analyze the relative importance of input variables.The elastic strain energy was the most essential variable,and some measures were proposed to prevent rockburst.To validate the practicability,the FNN developed by the balanced training set was utilized to predict rockburst in Sanshandao Gold Mine,China,and it had outstanding performance(accuracy 100%).展开更多
基金The authors of this paper acknowledge the support from the National Natural Science Foundation of China(No.51975191)the Funds for Science and Technology Creative Talents of Hubei,China(No.2023DJC048)This work was supported by the Xiangyang Hubei University of Technology Industrial Research Institute Funding Program(No.XYYJ2022B01).
文摘Accurate fault diagnosis of heating,ventilation,and air conditioning(HVAC)systems is of significant importance for maintaining normal operation,reducing energy consumption,and minimizing maintenance costs.However,in practical applications,it is challenging to obtain sufficient fault data for HVAC systems,leading to imbalanced data,where the number of fault samples is much smaller than that of normal samples.Moreover,most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy.Therefore,to address this issue,a composite neural network fault diagnosis model is proposed,which combines SMOTETomek,multi-scale one-dimensional convolutional neural networks(M1DCNN),and support vector machine(SVM).This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset,achieving a balanced number of faulty and normal data.Then,it employs the M1DCNN model to extract feature information from the augmented dataset.Finally,it replaces the original Softmax classifier with an SVM classifier for classification,thus enhancing the fault diagnosis accuracy.Using the SMOTETomek-M1DCNN-SVM method,we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10.The results demonstrate the superiority of this approach,providing a novel and promising solution for intelligent building management,with accuracy and F1 scores of 98.45%and 100%for the RP-1043 dataset and experimental dataset,respectively.
基金funded by the National Natural Science Foundation of China(41807259)the Innovation Driven Project of Central South University(2020CX040).
文摘The rockburst prediction becomes more and more challenging due to the development of deep underground projects and constructions.Increasing numbers of intelligent algorithms are used to predict and prevent rockburst.This paper investigated the drawbacks of neural networks in rockburst prediction,and aimed at these shortcomings,Bayesian optimization and the synthetic minority oversampling technique+Tomek Link(SMOTETomek)were applied to efficiently develop the feedforward neural network(FNN)model for rockburst prediction.In this regard,314 real rockburst cases were collected to establish a database for modeling.The database was divided into a training set(80%)and a test set(20%).The maximum tangential stress,uniaxial compressive strength,tensile strength,stress ratio,brittleness ratio,and elastic strain energy were selected as input parameters.Bayesian optimization was implemented to find the optimal hyperparameters in FNN.To eliminate the effects of imbalanced category,SMOTETomek was adopted to process the training set to obtain a balanced training set.The FNN developed by the balanced training set received 90.48% accuracy in the test set,and the accuracy improved 12.7% compared to the imbalanced training set.For interpreting the FNN model,the permutation importance algorithm was introduced to analyze the relative importance of input variables.The elastic strain energy was the most essential variable,and some measures were proposed to prevent rockburst.To validate the practicability,the FNN developed by the balanced training set was utilized to predict rockburst in Sanshandao Gold Mine,China,and it had outstanding performance(accuracy 100%).