考虑潜在高价值旅客特有的数据高度不平衡、旅客特征和价值类别弱相关等问题,提出一种基于三重混合采样和集成学习的潜在高价值旅客发现模型。采用RFM(Recency Frequency Monetary)方法标注旅客类别;使用三重混合采样对不平衡旅客数据...考虑潜在高价值旅客特有的数据高度不平衡、旅客特征和价值类别弱相关等问题,提出一种基于三重混合采样和集成学习的潜在高价值旅客发现模型。采用RFM(Recency Frequency Monetary)方法标注旅客类别;使用三重混合采样对不平衡旅客数据集进行重采样;使用融合特征选择算法遴选旅客特征;使用梯度提升决策树作为分类器,构建旅客价值预测模型,识别潜在高价值旅客。在PNR数据集上的实验结果表明,与基准算法相比,该模型能取得更好的AUC值和F1值,可以较好地识别潜在高价值旅客。展开更多
文摘考虑潜在高价值旅客特有的数据高度不平衡、旅客特征和价值类别弱相关等问题,提出一种基于三重混合采样和集成学习的潜在高价值旅客发现模型。采用RFM(Recency Frequency Monetary)方法标注旅客类别;使用三重混合采样对不平衡旅客数据集进行重采样;使用融合特征选择算法遴选旅客特征;使用梯度提升决策树作为分类器,构建旅客价值预测模型,识别潜在高价值旅客。在PNR数据集上的实验结果表明,与基准算法相比,该模型能取得更好的AUC值和F1值,可以较好地识别潜在高价值旅客。