期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost模型的交通事故严重程度预测
1
作者
邓卓
赵阳
《中国交通信息化》
2024年第6期121-124,共4页
本文采用美国2022年交通事故数据集,通过SMOTE_NC算法对数据进行过采样,从时空因素、天气因素和路况因素三个方面分析对交通事故的严重程度具有影响的13个因子,通过RStudio软件的XGBoost包里的XGBoost函数建立XGBoost多分类预测模型,验...
本文采用美国2022年交通事故数据集,通过SMOTE_NC算法对数据进行过采样,从时空因素、天气因素和路况因素三个方面分析对交通事故的严重程度具有影响的13个因子,通过RStudio软件的XGBoost包里的XGBoost函数建立XGBoost多分类预测模型,验证模型的准确性为89.76%,证明了XGBoost多分类模型的可行性,丰富了交通事故严重程度预测的理论内容,为减少事故影响、保障人民生命财产安全提供保障.
展开更多
关键词
交通事故
smote_nc
严重程度预测
XGBoost
下载PDF
职称材料
题名
基于XGBoost模型的交通事故严重程度预测
1
作者
邓卓
赵阳
机构
长安大学汽车学院
长安大学运输工程学院
出处
《中国交通信息化》
2024年第6期121-124,共4页
基金
河南省交通运输厅交通运输科研项目计划(2019G-2-11)
文摘
本文采用美国2022年交通事故数据集,通过SMOTE_NC算法对数据进行过采样,从时空因素、天气因素和路况因素三个方面分析对交通事故的严重程度具有影响的13个因子,通过RStudio软件的XGBoost包里的XGBoost函数建立XGBoost多分类预测模型,验证模型的准确性为89.76%,证明了XGBoost多分类模型的可行性,丰富了交通事故严重程度预测的理论内容,为减少事故影响、保障人民生命财产安全提供保障.
关键词
交通事故
smote_nc
严重程度预测
XGBoost
分类号
U491.31 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost模型的交通事故严重程度预测
邓卓
赵阳
《中国交通信息化》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部