Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, i...A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.展开更多
Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved chann...Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.展开更多
A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap for...A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.展开更多
The hydrodynamic surface water model DIVAST has been extended to include horizontally adjacent groundwater flows. This extended model is known as DIVAST-SG (Depth Integrated Velocities and Solute Transport with Surfac...The hydrodynamic surface water model DIVAST has been extended to include horizontally adjacent groundwater flows. This extended model is known as DIVAST-SG (Depth Integrated Velocities and Solute Transport with Surface Water and Groundwater). After development and analytical verification the model was tested against a novel laboratory set-up using open cell foam (60 pores per inch—ppi) as an idealised porous media representing a riverbank. The Hyder Hydraulics Laboratory at Cardiff University has a large tidal basin that was adapted to simulate a surface water—groundwater scenario using this foam, and used to validate the DIVAST-SG model. The properties of the laboratory set-up were measured and values were determined for hydraulic conductivity (permeability) and porosity, evaluated as 0.002 m/s and 75% respectively. Lessons learnt in this initial experimentation were used to modify the flume construction and improve the experimental procedure, with further experimentation being undertaken of both water level variations and tracer movement. Valuable data have been obtained from the laboratory experiments, allowing the validity of the numerical model to be assessed. Modifications to the input file to include representations of the joints between the foam blocks allowed a good fit between the observed and modelled water levels. Encouraging correlation was observed in tracer experiments using Rhodamine-WT dye between the observed exit points of the tracer from the foam, and the modelled exit points with time.展开更多
Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemis...Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemistry and nitrogen and oxygen isotopes to elucidate the status and identify sources of nitrate pollution in the south and north banks for three seasons(flood,dry,and mean-flow periods)in the Weihe River watershed.A Bayesian isotope mixing model was applied to estimate the contributions of four potential NO_(3)-sources to river pollution(manure and sewage,soil nitrogen,inorganic fertilizer,and nitrate in precipitation).The U.S.Environmental Protection Agency(USEPA)evaluation model was implemented to evaluate the health risks associated with nitrate pollution in the surface water.Nitrate pollution was most severe during the dry period because the river flow was small.Due to the influence of the topography and land use type of the Weihe River,the pollution in the main stream was greater than that of the tributaries,and the pollution of the south bank was greater than that of the north bank.During the flood and mean-flow periods,δ^(15)N and δ^(18)O were mainly distributed in the NH_(4)^(+) of the fertilizer and soil nitrogen.During the dry period,δ^(15)N and δ^(18)O were mainly distributed in domestic sewage and manure regions.According to the Stable Isotope Analysis in R(SIAR)model,manure and sewage were the major nitrate sources during the dry period(73%).However,a decrease in the contribution from domestic sewage and manure was observed during the flood period(45%)compared to the dry period,but with a significantly increased contribution from soil nitrogen(23%)and inorganic fertilizer(21%).The health risk value in the dry period was higher than that in the wet and mean flow periods,and children are more susceptible to nitrate pollution than adults.Therefore,reducing the discharge of domestic sewage and manure and improving the utilization rate of nitrogen fertilizers may be effective measures to improve water quality in the watershed.展开更多
Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this pa...Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.展开更多
Based on the maximum flux principle(MFP),a water quality evaluation model for surface water ecosystem is presented by using self-organization map(SOM) neural network simulation algorithm from the aspect of systematic ...Based on the maximum flux principle(MFP),a water quality evaluation model for surface water ecosystem is presented by using self-organization map(SOM) neural network simulation algorithm from the aspect of systematic structural evolution.This evaluation model is applied to the case of surface water ecosystem in Xindu District of Chengdu City in China.The values reflecting the water quality of five cross-sections of the system at different developing stages are obtained,with stable values of 1.438,2.952,1.86...展开更多
Proposed a new method to disclose the complicated non-linearity structure of the water-resource system, introducing chaos theory into the hydrology and water resources field, and combined with the chaos theory and art...Proposed a new method to disclose the complicated non-linearity structure of the water-resource system, introducing chaos theory into the hydrology and water resources field, and combined with the chaos theory and artificial neural networks. Training data construction and networks structure were determined by the phase space reconstruction, and establishing nonlinear relationship of phase points with neural networks, the forecasting model of the resource quantity of the surface water was brought forward. The keystone of the way and the detailed arithmetic of the network training were given. The example shows that the model has highly forecasting precision.展开更多
Total concentration and fractions of aluminum in water samples collected from the Le An River were determined by PCV complex colorimetry. Taking advantage of developed empirical models combined with nonlinear multiva...Total concentration and fractions of aluminum in water samples collected from the Le An River were determined by PCV complex colorimetry. Taking advantage of developed empirical models combined with nonlinear multivariate statistical technique, concentration of aluminum adsorbed by suspended particles, i.e. [Al ads ] was regressed with concentration of monomeric aluminum,i.e.[Al mono ], pH and turbidity. However, aluminum strongly bound with humic substances, i.e.[Al org ] was universally too low to detected in this experiment, and at least, it may be partially related with much lower DOC level along the Le An River.展开更多
Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models f...Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.展开更多
Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to ...Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to greatly improve the machining efficiency and precision of SMS,based on the CAD/CAM/CNC technology,this paper proposed a model of SMS digi- tal manufacturing system,which is composed of five functional modules (preprocess module,CAD module,CAM module,post- process module and CNC module),and a twin-skeg SMS as an example,the key technologies & design principle of the nodtules were investigated also Based on the above research works,the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed,which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the cur- rent handcrafting manufacturing method to 8 hours now,and which can control more effectively the precision of SMS also.展开更多
As the development of radar systems developed for the terahertz and higher millimeter region continues to grow, the interest in the water surface and land clutter at terahertz and higher millimeter frequencies continu...As the development of radar systems developed for the terahertz and higher millimeter region continues to grow, the interest in the water surface and land clutter at terahertz and higher millimeter frequencies continues to increase. An empirical model of sea clutter reflectivity is described firstly, which is valid at near vertical incidence and has small average absolute deviation compared to other empirical models. Simulated results of 0.14 THz sea clutter at near vertical incidence with thismodel are shown. An indoor test-bed is constructed in order to measure 0.14 THz water surface clutter reflectivity and an experiment is carried out. Initial experimental results are presented and compared to the simulation results, which partially verifies that the empirical sea clutter model still works at 0.14 THz.展开更多
Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation and ablation processes.However,there are still uncertaintie...Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation and ablation processes.However,there are still uncertainties in modeling snow resources over complex terrain such as mountains.This study employed the National Center for Atmospheric Research’s Weather Research and Forecasting(WRF)model coupled with the Noah-Multiparameterization(Noah-MP)land surface model to run one-year simulations to assess its ability to simulate snow across the Tianshan Mountains.Six tests were conducted based on different reanalysis forcing datasets and different land surface properties.The results indicated that the snow dynamics were reproduced in a snow hydrological year by the WRF/Noah-MP model for all of the tests.The model produced a low bias in snow depth and snow water equivalent(SWE)regardless of the forcing datasets.Additionally,the underestimation of snow depth and SWE could be relatively alleviated by modifying the land cover and vegetation parameters.However,no significant improvement in accuracy was found in the date of snow depth maximum and melt rate.The best performance was achieved using ERA5 with modified land cover and vegetation parameters(mean bias=−4.03 mm and−1.441 mm for snow depth and SWE,respectively).This study highlights the importance of selecting forcing data for snow simulation over the Tianshan Mountains.展开更多
Kinetin is an important growth hormone used for in vitro propagation, but its dynamic and temporal effects on Dioscoreaalata have not been thoroughly evaluated. In this study, surface response models were developed to...Kinetin is an important growth hormone used for in vitro propagation, but its dynamic and temporal effects on Dioscoreaalata have not been thoroughly evaluated. In this study, surface response models were developed to better elucidate the effects ofkinetin on D. alata propagated in vitro. Nodal segments were obtained from Akaaba, an important D. alata cultivar in Ghana, andpropagated in vitro under five kinetin rates (0, 2.5, 5, 7.5 and 10 μM). The models were developed using segmented multipleregression with time and kinetin as the predictors. The effects on plant height, the number of leaves, shoots and roots were assessedwith three-dimensional figures for better observation of temporal trends. The model fit was very good with normalized root meansquared error (NRMSE) = 0.1, R-squared = 0.83 and adjusted R-squared = 0.82, averaged across the different growth parameters.Different kinetin levels elicited the maximum shoot, leaf and root formation, as well as the growth rates over time. Moderate kinetinlevels (2-4 μM) provided better growth at early culturing period. Higher kinetin levels (5-10 μM) suppressed the growth of theplantlets at early stages, but the plantlets recovered from the stress and resumed normal growth thereafter. After 4-5 weeks, thegrowth rates of the moderate kinetin levels (2-4 μM) declined much faster and were lower compared to the higher kinetin levels,except plant height and the number of roots which were still higher at the moderate kinetin level even after eight weeks of culturing.Thus, kinetin requirements vary depending on the growth parameters of interest.展开更多
This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are result...This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China projects[grant numbers 42305178 and U2344224]the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
文摘A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510701)the National Natural Science Foundation of China(Grant No.U20A20319).
文摘Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.
文摘A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.
文摘The hydrodynamic surface water model DIVAST has been extended to include horizontally adjacent groundwater flows. This extended model is known as DIVAST-SG (Depth Integrated Velocities and Solute Transport with Surface Water and Groundwater). After development and analytical verification the model was tested against a novel laboratory set-up using open cell foam (60 pores per inch—ppi) as an idealised porous media representing a riverbank. The Hyder Hydraulics Laboratory at Cardiff University has a large tidal basin that was adapted to simulate a surface water—groundwater scenario using this foam, and used to validate the DIVAST-SG model. The properties of the laboratory set-up were measured and values were determined for hydraulic conductivity (permeability) and porosity, evaluated as 0.002 m/s and 75% respectively. Lessons learnt in this initial experimentation were used to modify the flume construction and improve the experimental procedure, with further experimentation being undertaken of both water level variations and tracer movement. Valuable data have been obtained from the laboratory experiments, allowing the validity of the numerical model to be assessed. Modifications to the input file to include representations of the joints between the foam blocks allowed a good fit between the observed and modelled water levels. Encouraging correlation was observed in tracer experiments using Rhodamine-WT dye between the observed exit points of the tracer from the foam, and the modelled exit points with time.
基金supported by National Natural Science Foundation of China(Grant No.41601017)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20190702)。
文摘Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemistry and nitrogen and oxygen isotopes to elucidate the status and identify sources of nitrate pollution in the south and north banks for three seasons(flood,dry,and mean-flow periods)in the Weihe River watershed.A Bayesian isotope mixing model was applied to estimate the contributions of four potential NO_(3)-sources to river pollution(manure and sewage,soil nitrogen,inorganic fertilizer,and nitrate in precipitation).The U.S.Environmental Protection Agency(USEPA)evaluation model was implemented to evaluate the health risks associated with nitrate pollution in the surface water.Nitrate pollution was most severe during the dry period because the river flow was small.Due to the influence of the topography and land use type of the Weihe River,the pollution in the main stream was greater than that of the tributaries,and the pollution of the south bank was greater than that of the north bank.During the flood and mean-flow periods,δ^(15)N and δ^(18)O were mainly distributed in the NH_(4)^(+) of the fertilizer and soil nitrogen.During the dry period,δ^(15)N and δ^(18)O were mainly distributed in domestic sewage and manure regions.According to the Stable Isotope Analysis in R(SIAR)model,manure and sewage were the major nitrate sources during the dry period(73%).However,a decrease in the contribution from domestic sewage and manure was observed during the flood period(45%)compared to the dry period,but with a significantly increased contribution from soil nitrogen(23%)and inorganic fertilizer(21%).The health risk value in the dry period was higher than that in the wet and mean flow periods,and children are more susceptible to nitrate pollution than adults.Therefore,reducing the discharge of domestic sewage and manure and improving the utilization rate of nitrogen fertilizers may be effective measures to improve water quality in the watershed.
文摘Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.
基金Supported by National Water Science and Technology Research Project(No.2008ZX07102-001)
文摘Based on the maximum flux principle(MFP),a water quality evaluation model for surface water ecosystem is presented by using self-organization map(SOM) neural network simulation algorithm from the aspect of systematic structural evolution.This evaluation model is applied to the case of surface water ecosystem in Xindu District of Chengdu City in China.The values reflecting the water quality of five cross-sections of the system at different developing stages are obtained,with stable values of 1.438,2.952,1.86...
基金Supported by 863 Program of China(2002AA2Z4291) Henan Innovation Project for University Prominent Research Talents(2005KYCX015)Henan Project for University Prominent Talents
文摘Proposed a new method to disclose the complicated non-linearity structure of the water-resource system, introducing chaos theory into the hydrology and water resources field, and combined with the chaos theory and artificial neural networks. Training data construction and networks structure were determined by the phase space reconstruction, and establishing nonlinear relationship of phase points with neural networks, the forecasting model of the resource quantity of the surface water was brought forward. The keystone of the way and the detailed arithmetic of the network training were given. The example shows that the model has highly forecasting precision.
文摘Total concentration and fractions of aluminum in water samples collected from the Le An River were determined by PCV complex colorimetry. Taking advantage of developed empirical models combined with nonlinear multivariate statistical technique, concentration of aluminum adsorbed by suspended particles, i.e. [Al ads ] was regressed with concentration of monomeric aluminum,i.e.[Al mono ], pH and turbidity. However, aluminum strongly bound with humic substances, i.e.[Al org ] was universally too low to detected in this experiment, and at least, it may be partially related with much lower DOC level along the Le An River.
基金supported by a project of the National Key Research and Development Program of China [grant number2016YFA0602501]a project of the National Natural Science Foundation of China [grant numbers 41630532 and41575093]
文摘Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.
文摘Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to greatly improve the machining efficiency and precision of SMS,based on the CAD/CAM/CNC technology,this paper proposed a model of SMS digi- tal manufacturing system,which is composed of five functional modules (preprocess module,CAD module,CAM module,post- process module and CNC module),and a twin-skeg SMS as an example,the key technologies & design principle of the nodtules were investigated also Based on the above research works,the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed,which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the cur- rent handcrafting manufacturing method to 8 hours now,and which can control more effectively the precision of SMS also.
文摘As the development of radar systems developed for the terahertz and higher millimeter region continues to grow, the interest in the water surface and land clutter at terahertz and higher millimeter frequencies continues to increase. An empirical model of sea clutter reflectivity is described firstly, which is valid at near vertical incidence and has small average absolute deviation compared to other empirical models. Simulated results of 0.14 THz sea clutter at near vertical incidence with thismodel are shown. An indoor test-bed is constructed in order to measure 0.14 THz water surface clutter reflectivity and an experiment is carried out. Initial experimental results are presented and compared to the simulation results, which partially verifies that the empirical sea clutter model still works at 0.14 THz.
基金This study was supported by the National Natural Science Foundation of China(NSFC Grant 42001061,U1703241,and 41901087)the Strategic Priority Research Program of the Chinese Academy of Sciences,the Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(No.XDA2004030202).
文摘Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation and ablation processes.However,there are still uncertainties in modeling snow resources over complex terrain such as mountains.This study employed the National Center for Atmospheric Research’s Weather Research and Forecasting(WRF)model coupled with the Noah-Multiparameterization(Noah-MP)land surface model to run one-year simulations to assess its ability to simulate snow across the Tianshan Mountains.Six tests were conducted based on different reanalysis forcing datasets and different land surface properties.The results indicated that the snow dynamics were reproduced in a snow hydrological year by the WRF/Noah-MP model for all of the tests.The model produced a low bias in snow depth and snow water equivalent(SWE)regardless of the forcing datasets.Additionally,the underestimation of snow depth and SWE could be relatively alleviated by modifying the land cover and vegetation parameters.However,no significant improvement in accuracy was found in the date of snow depth maximum and melt rate.The best performance was achieved using ERA5 with modified land cover and vegetation parameters(mean bias=−4.03 mm and−1.441 mm for snow depth and SWE,respectively).This study highlights the importance of selecting forcing data for snow simulation over the Tianshan Mountains.
文摘Kinetin is an important growth hormone used for in vitro propagation, but its dynamic and temporal effects on Dioscoreaalata have not been thoroughly evaluated. In this study, surface response models were developed to better elucidate the effects ofkinetin on D. alata propagated in vitro. Nodal segments were obtained from Akaaba, an important D. alata cultivar in Ghana, andpropagated in vitro under five kinetin rates (0, 2.5, 5, 7.5 and 10 μM). The models were developed using segmented multipleregression with time and kinetin as the predictors. The effects on plant height, the number of leaves, shoots and roots were assessedwith three-dimensional figures for better observation of temporal trends. The model fit was very good with normalized root meansquared error (NRMSE) = 0.1, R-squared = 0.83 and adjusted R-squared = 0.82, averaged across the different growth parameters.Different kinetin levels elicited the maximum shoot, leaf and root formation, as well as the growth rates over time. Moderate kinetinlevels (2-4 μM) provided better growth at early culturing period. Higher kinetin levels (5-10 μM) suppressed the growth of theplantlets at early stages, but the plantlets recovered from the stress and resumed normal growth thereafter. After 4-5 weeks, thegrowth rates of the moderate kinetin levels (2-4 μM) declined much faster and were lower compared to the higher kinetin levels,except plant height and the number of roots which were still higher at the moderate kinetin level even after eight weeks of culturing.Thus, kinetin requirements vary depending on the growth parameters of interest.
文摘This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.