Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is t...Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.展开更多
Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a c...Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
文摘Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.
文摘Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.