Quality deficiencies in single nucleotide polymorphism (SNP) analyses have important implications. We used missingness rates to investigate the quality of a recently published dataset containing 424 mitochonddal, 21...Quality deficiencies in single nucleotide polymorphism (SNP) analyses have important implications. We used missingness rates to investigate the quality of a recently published dataset containing 424 mitochonddal, 211 Y chromosomal, and 160 432 autosomal SNPs generated by a semicustom Illumina SNP array from 5 392 dogs and 14 grey wolves. Overall, the individual missingness rate for mitochondrial SNPs was -43.8%, with 980 (18.1%)individuals completely missing mitochondrial SNP genotyping (missingness rate=l). In males, the genotype missingness rate was -28.8% for Y chromosomal SNPs, with 374 males recording rates above 0.96. These 374 males also exhibited completely failed mitochondrial SNPs genotyping, indicative of a batch effect. Individual missingness rates for autosomal markers were greater than zero, but less than 0.5. Neither mitochondrial nor Y chromosomal SNPs achieved complete genotyping (locus missingness rate=0), whereas 5.9% of autosomal SNPs had a locus missingness rate=l. The high missingness rates and possible batch effect show that caution and rigorous measures are vital when genotyping and analyzing SNP array data for domestic animals. Further improvements of these arrays will be helpful to future studies.展开更多
Identification of the S genotype of Malus plants will greatly promote the discovery of new genes,the cultivation and production of apple,the breeding of new varieties,and the origin and evolution of self-incompatibili...Identification of the S genotype of Malus plants will greatly promote the discovery of new genes,the cultivation and production of apple,the breeding of new varieties,and the origin and evolution of self-incompatibility in Malus plants.In this experiment,88 Malus germplasm resources,such as Aihuahong,Xishuhaitang,and Reguanzi,were used as materials.Seven gene-specific primer combinations were used in the genotype identification.PCR amplification using leaf DNA produced a single S-RNase gene fragment in all materials.The results revealed that 70 of the identified materials obtained a complete S-RNase genotype,while only one S-RNase gene was found in 18 of them.Through homology comparison and analysis,13 S-RNase genotypes were obtained:S_(1)S_(2)(Aihuahong,etc.),S_(1)S_(28)(Xixian Haitang,etc.),S_(1)S_(51)(Hebei Pingdinghaitang),S_(1)S_(3)(Xiangyangcun Daguo,etc.),S_(2)S_(3)(Zhaiyehaitang,etc.),S_(3)S_(51)(Xishan 1),S_(3)S_(28)(Huangselihaerde,etc.),S_(2)S_(28)(Honghaitang,etc.),S_(4)S_(28)(Bo 11),S_(7)S_(28)(Jiuquan Shaguo),S_(10)S_e(Dongchengguan 13),S_(10)S_(21)(Dongxiangjiao)and S_(3)S_(51)(Xiongyue Haitang).Simultaneously,the frequency of the S gene in the tested materials was analyzed.The findings revealed that different S genes had varying frequencies in Malus resources,as well as varying frequencies between intraspecific and interspecific.S_(3) had the highest frequency of 68.18%,followed by S_(1)(42.04%).In addition,the phylogenetic tree and origin evolution analysis revealed that the S gene differentiation was completed prior to the formation of various apple species,that cultivated species also evolved new S genes,and that the S_(50) gene is the oldest S allele in Malus plants.The S_(1),S_(29),and S_(33) genes in apple-cultivated species,on the other hand,may have originated in M.sieversii,M.hupehensis,and M.kansuensis,respectively.In addition to M.sieversii,M.kansuensis and M.sikkimensis may have also played a role in the origin and evolution of some Chinese apples.展开更多
Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese...Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.展开更多
基金supported by grants from the NSFC(91531303)the 973 programs(2013CB8352002013CB835202)
文摘Quality deficiencies in single nucleotide polymorphism (SNP) analyses have important implications. We used missingness rates to investigate the quality of a recently published dataset containing 424 mitochonddal, 211 Y chromosomal, and 160 432 autosomal SNPs generated by a semicustom Illumina SNP array from 5 392 dogs and 14 grey wolves. Overall, the individual missingness rate for mitochondrial SNPs was -43.8%, with 980 (18.1%)individuals completely missing mitochondrial SNP genotyping (missingness rate=l). In males, the genotype missingness rate was -28.8% for Y chromosomal SNPs, with 374 males recording rates above 0.96. These 374 males also exhibited completely failed mitochondrial SNPs genotyping, indicative of a batch effect. Individual missingness rates for autosomal markers were greater than zero, but less than 0.5. Neither mitochondrial nor Y chromosomal SNPs achieved complete genotyping (locus missingness rate=0), whereas 5.9% of autosomal SNPs had a locus missingness rate=l. The high missingness rates and possible batch effect show that caution and rigorous measures are vital when genotyping and analyzing SNP array data for domestic animals. Further improvements of these arrays will be helpful to future studies.
基金financially supported by the Agricultural Science and Technology Innovation Program(CAASASTIP-2021-RIP-02)。
文摘Identification of the S genotype of Malus plants will greatly promote the discovery of new genes,the cultivation and production of apple,the breeding of new varieties,and the origin and evolution of self-incompatibility in Malus plants.In this experiment,88 Malus germplasm resources,such as Aihuahong,Xishuhaitang,and Reguanzi,were used as materials.Seven gene-specific primer combinations were used in the genotype identification.PCR amplification using leaf DNA produced a single S-RNase gene fragment in all materials.The results revealed that 70 of the identified materials obtained a complete S-RNase genotype,while only one S-RNase gene was found in 18 of them.Through homology comparison and analysis,13 S-RNase genotypes were obtained:S_(1)S_(2)(Aihuahong,etc.),S_(1)S_(28)(Xixian Haitang,etc.),S_(1)S_(51)(Hebei Pingdinghaitang),S_(1)S_(3)(Xiangyangcun Daguo,etc.),S_(2)S_(3)(Zhaiyehaitang,etc.),S_(3)S_(51)(Xishan 1),S_(3)S_(28)(Huangselihaerde,etc.),S_(2)S_(28)(Honghaitang,etc.),S_(4)S_(28)(Bo 11),S_(7)S_(28)(Jiuquan Shaguo),S_(10)S_e(Dongchengguan 13),S_(10)S_(21)(Dongxiangjiao)and S_(3)S_(51)(Xiongyue Haitang).Simultaneously,the frequency of the S gene in the tested materials was analyzed.The findings revealed that different S genes had varying frequencies in Malus resources,as well as varying frequencies between intraspecific and interspecific.S_(3) had the highest frequency of 68.18%,followed by S_(1)(42.04%).In addition,the phylogenetic tree and origin evolution analysis revealed that the S gene differentiation was completed prior to the formation of various apple species,that cultivated species also evolved new S genes,and that the S_(50) gene is the oldest S allele in Malus plants.The S_(1),S_(29),and S_(33) genes in apple-cultivated species,on the other hand,may have originated in M.sieversii,M.hupehensis,and M.kansuensis,respectively.In addition to M.sieversii,M.kansuensis and M.sikkimensis may have also played a role in the origin and evolution of some Chinese apples.
基金supported by the Key Research Project of the Shennong Laboratory,Henan Province,China(SN012022-05)the National Natural Science Foundation of China(32272866)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Starting Foundation for Outstanding Young Scientists of Henan Agricultural University,China(30500664&30501280)。
文摘Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.
文摘目的:探讨健康中国汉族人群中basigin(BSG)基因的单核苷酸多态性(single nucleotide polymorphisms,SNPs)发生情况。方法:随机收集48例健康、无亲缘关系的中国汉族人外周血液并提取基因组DNA,设计引物对所有个体BSG基因的启动子区、外显子区和外显子内含子交界区的序列进行PCR扩增和正反向测序,通过判读测序峰图,明确SNPs的发生情况及其频率;通过Hardy-Weinberg平衡分析、单倍型推测和连锁不平衡分析,确定BSG基因位点的单倍型标签SNPs(haplotype tag SNPs,htSNPs);中性理论检验查明该基因位点SNPs频率分布是否符合选择中性。结果:共发现19个SNPs,其中包括2个新发现的SNPs;所有SNPs位点基因型分布均符合Hardy-Weinberg平衡。该基因位点共推测出4种常见单倍型域,确定9个SNPs为htSNPs。中性理论检验结果提示健康中国汉族人群BSG基因的SNPs分布符合中性进化假说。结论:首次对中国健康汉族人群BSG基因的SNPs进行了发掘,确定了其9个单倍型标签SNPs,为在汉族人群中研究该基因的遗传多态性与疾病易感性或药物反应性个体差异奠定了基础。