信噪比(SNR)估计是信道估计的重要组成部分,很多先进通信系统和信号处理方法都将信噪比作为先验信息,因此对信噪比估计方法的研究尤为重要。基于多进制相移键控(MPSK)信号模型,对最大似然类、矩估计类和空间分解类算法进行了性能分析和...信噪比(SNR)估计是信道估计的重要组成部分,很多先进通信系统和信号处理方法都将信噪比作为先验信息,因此对信噪比估计方法的研究尤为重要。基于多进制相移键控(MPSK)信号模型,对最大似然类、矩估计类和空间分解类算法进行了性能分析和仿真。在一定条件下,上述算法的估计偏差在[0,20]d B区间内均小于1 d B,其中最大似然类算法估计精确度最高,但易受解调误码率影响;矩估计类算法在低信噪比时性能较好,高信噪比时易受算法自噪声影响;空间分解类算法适应性最强,但实时性较差。通过对上述算法一致性和差异性分析,总结了信噪比估计的研究进展和主要问题,明确了复杂调制信号宽范围信噪比估计和空间分解方法的研究方向,为后续研究提供了解决思路和改进措施。展开更多
文摘信噪比(SNR)估计是信道估计的重要组成部分,很多先进通信系统和信号处理方法都将信噪比作为先验信息,因此对信噪比估计方法的研究尤为重要。基于多进制相移键控(MPSK)信号模型,对最大似然类、矩估计类和空间分解类算法进行了性能分析和仿真。在一定条件下,上述算法的估计偏差在[0,20]d B区间内均小于1 d B,其中最大似然类算法估计精确度最高,但易受解调误码率影响;矩估计类算法在低信噪比时性能较好,高信噪比时易受算法自噪声影响;空间分解类算法适应性最强,但实时性较差。通过对上述算法一致性和差异性分析,总结了信噪比估计的研究进展和主要问题,明确了复杂调制信号宽范围信噪比估计和空间分解方法的研究方向,为后续研究提供了解决思路和改进措施。