Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empi...Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empirically analyze the impact of manufacturing servitization on urban sulfur dioxide(SO_(2))emissions within the classical Environmental Kuznets Curve(EKC)framework.The results show that manufacturing servitization can reduce SO_(2) emissions.Producer servitization and consumptive services can both significantly reduce industrial SO_(2) emissions.Transportation and warehousing servitization,information servitization,leasing,and commercial servitization,technology research and development servitization significantly reduce SO_(2) emissions;technology research and development servitization,in particular,have the largest influence coefficient,while the reduction effect of servitization in the wholesale and retail and finance sectors is not significant.The study also found that servitization reduced the SO_(2) emissions through technological innovation and industrial structure upgrading.展开更多
This paper investigates the effect and transmission mechanism of air pollution on urbanization based on data from China’s 107 cities during 2005–2018.In order to identify the impact of air pollution on China’s urba...This paper investigates the effect and transmission mechanism of air pollution on urbanization based on data from China’s 107 cities during 2005–2018.In order to identify the impact of air pollution on China’s urbanization,we utilized night light data to represent the level of urbanization and used temperature inversion as an instrumental variable to mitigate endogeneity within the two-stage least squares framework.The results suggest that air pollution significantly slowed China’s urbanization process with economic growth acting as the transmission mechanism.The heterogeneity analyses revealed that air pollution had a greater negative impact on urbanization in northern regions than that in southern regions,and a greater negative impact in resource-oriented cities than that in non-resource-based cities.We also find that air pollution was to the detriment of urbanization in larger cities,which have more than 3 million residents,while it did not have a significant impact on Type II large cities,which have fewer than 3 million residents.展开更多
To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, li...To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, livestock wastes,and municipal and agricultural wastes, with national and international concern about its potential adverse effects on environmental quality and public health. To understand these phenomena and problems, first the nitrogen cycle and the environment are described. Then recent trends for nitrogen cycling through the food and feed system, N2O emissions from fertilized upland and paddy soils, and NO-3 pollution in ground water in Japan are reported. Finally, mitigation strategies in Japan for reducing N2O emission and NO-3 pollution are proposed, including nitrification inhibitors, controlled release fertilizers, utilization of plant species that could suppress nitrification, utilizing the toposequence, government policy, and appropriate agricultural practices. Of all the technologies presented, use of nitrification inhibitors and controlled release fertilizers are deemed the most important with further development of these aspects of technologies being expected. These practices, if employed worldwide, could help reduce the load, or environmental deterioration, on the Earth's biosphere.展开更多
Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the as...Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the association between exposure to air pollution andT2DM in developing countries.Methods The databases,including PubMed,EMBASE and Web of Science,were systematically searched for studies published up to 31 March 2022.Studies about the association between air pollution andT2DM prevalence or incidence in developing countries were included.The odds ratio(OR)was used as effect estimate.We synthesized the included studies in the meta-analysis.Results We included 8 cross-sectional studies and 8 cohort studies,all conducted in developing countries.Meta-analysis of 8 studies on PM_(2.5)(particulate matter ≤2.5 μm in diameter)showed that T2DM prevalence was significantly associated with PM_(2.5)exposure(OR=1.12;95%CI:1.07,1.17;P<0.001).The association between air pollutants andT2DM incidence was not estimated due to the limited relevant studies.Conclusions The exposure to PM_(2.5)would be positively associated with an increased prevalence of T2DM in developing countries.Some effective measures should be taken to reduce air pollutant exposure in people who are vulnerable to diabetes.展开更多
[Objective] The aim was to study the correlation between Cr6+ and Mn2+ adsorption in rock-soil medium with combined pollution. [Method] Combining single Cr6+ and Mn2+ adsorption test with combined pollution test, the ...[Objective] The aim was to study the correlation between Cr6+ and Mn2+ adsorption in rock-soil medium with combined pollution. [Method] Combining single Cr6+ and Mn2+ adsorption test with combined pollution test, the adsorption laws of Cr6+ and Mn2+ were studied, and the correlation between Cr6+ and Mn2+ adsorption was analysed by using correlation analysis and regression analysis. [Result] According to the comparative analysis on adsorption tests, the adsorption time, adsorption amount and adsorption speed of Cr6+ and Mn2+ were obviously distinct in single adsorption test and combined adsorption test. Correlation analysis revealed that there was a significantly positive correlation between Cr6+ and Mn2+, and there existed addition effects between Cr6+ and Mn2+ in regression analysis, that is, the adsorption of Cr6+ by the soil tested would be enhanced by Mn2+. [Conclusion] The research could provide scientific references for environmental control and environmental management.展开更多
Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized...Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.展开更多
China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies o...China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.展开更多
基金funded by the National Social Science Foundation of China[Grant No.23CGJ011 and Grant No.22BGJ029]National Natural Science Foundation of China[Grant No.72263015]Science and Technology Youth Project of the Jiangxi Provincial Department of Education[Grant No.GJJ200530].
文摘Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empirically analyze the impact of manufacturing servitization on urban sulfur dioxide(SO_(2))emissions within the classical Environmental Kuznets Curve(EKC)framework.The results show that manufacturing servitization can reduce SO_(2) emissions.Producer servitization and consumptive services can both significantly reduce industrial SO_(2) emissions.Transportation and warehousing servitization,information servitization,leasing,and commercial servitization,technology research and development servitization significantly reduce SO_(2) emissions;technology research and development servitization,in particular,have the largest influence coefficient,while the reduction effect of servitization in the wholesale and retail and finance sectors is not significant.The study also found that servitization reduced the SO_(2) emissions through technological innovation and industrial structure upgrading.
基金supported by Preliminary Funding Project of Hubei Provincial Department of Education[Grant No.22ZD100].
文摘This paper investigates the effect and transmission mechanism of air pollution on urbanization based on data from China’s 107 cities during 2005–2018.In order to identify the impact of air pollution on China’s urbanization,we utilized night light data to represent the level of urbanization and used temperature inversion as an instrumental variable to mitigate endogeneity within the two-stage least squares framework.The results suggest that air pollution significantly slowed China’s urbanization process with economic growth acting as the transmission mechanism.The heterogeneity analyses revealed that air pollution had a greater negative impact on urbanization in northern regions than that in southern regions,and a greater negative impact in resource-oriented cities than that in non-resource-based cities.We also find that air pollution was to the detriment of urbanization in larger cities,which have more than 3 million residents,while it did not have a significant impact on Type II large cities,which have fewer than 3 million residents.
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Scicences, China (No. KZCX2-413)
文摘To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, livestock wastes,and municipal and agricultural wastes, with national and international concern about its potential adverse effects on environmental quality and public health. To understand these phenomena and problems, first the nitrogen cycle and the environment are described. Then recent trends for nitrogen cycling through the food and feed system, N2O emissions from fertilized upland and paddy soils, and NO-3 pollution in ground water in Japan are reported. Finally, mitigation strategies in Japan for reducing N2O emission and NO-3 pollution are proposed, including nitrification inhibitors, controlled release fertilizers, utilization of plant species that could suppress nitrification, utilizing the toposequence, government policy, and appropriate agricultural practices. Of all the technologies presented, use of nitrification inhibitors and controlled release fertilizers are deemed the most important with further development of these aspects of technologies being expected. These practices, if employed worldwide, could help reduce the load, or environmental deterioration, on the Earth's biosphere.
文摘Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the association between exposure to air pollution andT2DM in developing countries.Methods The databases,including PubMed,EMBASE and Web of Science,were systematically searched for studies published up to 31 March 2022.Studies about the association between air pollution andT2DM prevalence or incidence in developing countries were included.The odds ratio(OR)was used as effect estimate.We synthesized the included studies in the meta-analysis.Results We included 8 cross-sectional studies and 8 cohort studies,all conducted in developing countries.Meta-analysis of 8 studies on PM_(2.5)(particulate matter ≤2.5 μm in diameter)showed that T2DM prevalence was significantly associated with PM_(2.5)exposure(OR=1.12;95%CI:1.07,1.17;P<0.001).The association between air pollutants andT2DM incidence was not estimated due to the limited relevant studies.Conclusions The exposure to PM_(2.5)would be positively associated with an increased prevalence of T2DM in developing countries.Some effective measures should be taken to reduce air pollutant exposure in people who are vulnerable to diabetes.
基金Supported by Hydrogeologic Investigation and Karst Water Exploitation Demonstration of Major Karst Basin in Guangxi,China (200710)Project of China Geological Survey (1212010634803)
文摘[Objective] The aim was to study the correlation between Cr6+ and Mn2+ adsorption in rock-soil medium with combined pollution. [Method] Combining single Cr6+ and Mn2+ adsorption test with combined pollution test, the adsorption laws of Cr6+ and Mn2+ were studied, and the correlation between Cr6+ and Mn2+ adsorption was analysed by using correlation analysis and regression analysis. [Result] According to the comparative analysis on adsorption tests, the adsorption time, adsorption amount and adsorption speed of Cr6+ and Mn2+ were obviously distinct in single adsorption test and combined adsorption test. Correlation analysis revealed that there was a significantly positive correlation between Cr6+ and Mn2+, and there existed addition effects between Cr6+ and Mn2+ in regression analysis, that is, the adsorption of Cr6+ by the soil tested would be enhanced by Mn2+. [Conclusion] The research could provide scientific references for environmental control and environmental management.
基金funding from the National Natural Science Foundation of China (21567008, 21707055)the Program for Innovative Research Team of Guangdong University of Petrochemical Technology+4 种基金the Yangfan talents Project of Guangdong Provincethe Innovation-driven “5511” Program in Jiangxi Province (20165BCB18014)the Funding Program for Academic and Technological Leaders of Major Disciplines in Jiangxi Province (20172BCB22018)the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation for Distinguished Young Scholars of Hunan Province, China (2017JJ1026)~~
文摘Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3105304]the National Natural Science Foundation of China[grant number 72348001]the National Social Science Fund of China[grant number 22&ZD108].
文摘China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.