High-quality LDH-SO4-CO3 whiskers were synthesized via liquid precipitation method using MgSO4·7 H2 O and Al2(SO4)3·18 H2O as precursors and Na2CO3-NaHCO3 buffer solution as precipitant. The influence of buf...High-quality LDH-SO4-CO3 whiskers were synthesized via liquid precipitation method using MgSO4·7 H2 O and Al2(SO4)3·18 H2O as precursors and Na2CO3-NaHCO3 buffer solution as precipitant. The influence of buffer solution concentration on the characteristics of the samples was investigated. The asgrown whiskers were characterized by X-ray diffraction, transmission electron microscopy, and BrunauerEmmett-Teller N2 specific surface area measurements. The results show that the buffer solution concentration has significant impact on whiskers with intercalated structure. The LDH-SO4-CO3 whiskers with well-defined geometry, distinct intercalated structure, decent quality, and excellent dispersing capability can be obtained under the following conditions: buffer solution volume ratio of 45%, reaction temperature of 83°C, and reaction time of 182 h. The obtained whiskers are well-crystallized and exhibit homogeneous morphology consisting of fiber bars.展开更多
Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics...Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.展开更多
通过水热改性氢氧化锆制备了SO42-/ZrO2固体酸催化剂。以冰乙酸和正丁醇的酯化反应为探针反应,确定了固体超强酸的最佳制备条件。分别考察了浸渍硫酸浓度、硫酸浸渍时间和焙烧温度等对催化活性的影响。并以水热改性和未经水热改性氢氧...通过水热改性氢氧化锆制备了SO42-/ZrO2固体酸催化剂。以冰乙酸和正丁醇的酯化反应为探针反应,确定了固体超强酸的最佳制备条件。分别考察了浸渍硫酸浓度、硫酸浸渍时间和焙烧温度等对催化活性的影响。并以水热改性和未经水热改性氢氧化锆制备SO42-/ZrO2固体超强酸做了对比实验,采用XRD、BET对催化剂进行了表征。实验结果表明:水热改性氢氧化锆制备SO42-/ZrO2固体酸催化剂的最佳条件是:浸渍硫酸浓度为0.5mol/L,浸渍时间是120 m in,焙烧温度500℃。乙酸正丁酯较佳的合成工艺条件是:反应温度105~110℃,反应时间2 h,n(正丁醇)∶n(冰乙酸)=2∶1,催化剂用量占反应投料总质量的0.27%,冰乙酸的酯化率达99.1%。催化剂重复使用4次后催化活性降低5%。展开更多
基金Funded by National Natural Science Foundation of China(No.51272207)Science and Technology Plan of Guangdong Province((No.2013B021100019)
文摘High-quality LDH-SO4-CO3 whiskers were synthesized via liquid precipitation method using MgSO4·7 H2 O and Al2(SO4)3·18 H2O as precursors and Na2CO3-NaHCO3 buffer solution as precipitant. The influence of buffer solution concentration on the characteristics of the samples was investigated. The asgrown whiskers were characterized by X-ray diffraction, transmission electron microscopy, and BrunauerEmmett-Teller N2 specific surface area measurements. The results show that the buffer solution concentration has significant impact on whiskers with intercalated structure. The LDH-SO4-CO3 whiskers with well-defined geometry, distinct intercalated structure, decent quality, and excellent dispersing capability can be obtained under the following conditions: buffer solution volume ratio of 45%, reaction temperature of 83°C, and reaction time of 182 h. The obtained whiskers are well-crystallized and exhibit homogeneous morphology consisting of fiber bars.
基金Project(51474075)supported by the National Natural Science Foundation of China
文摘Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.
文摘通过水热改性氢氧化锆制备了SO42-/ZrO2固体酸催化剂。以冰乙酸和正丁醇的酯化反应为探针反应,确定了固体超强酸的最佳制备条件。分别考察了浸渍硫酸浓度、硫酸浸渍时间和焙烧温度等对催化活性的影响。并以水热改性和未经水热改性氢氧化锆制备SO42-/ZrO2固体超强酸做了对比实验,采用XRD、BET对催化剂进行了表征。实验结果表明:水热改性氢氧化锆制备SO42-/ZrO2固体酸催化剂的最佳条件是:浸渍硫酸浓度为0.5mol/L,浸渍时间是120 m in,焙烧温度500℃。乙酸正丁酯较佳的合成工艺条件是:反应温度105~110℃,反应时间2 h,n(正丁醇)∶n(冰乙酸)=2∶1,催化剂用量占反应投料总质量的0.27%,冰乙酸的酯化率达99.1%。催化剂重复使用4次后催化活性降低5%。