期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Designing a High-Performance Deep Learning Theoretical Model for Biomedical Image Segmentation by Using Key Elements of the Latest U-Net-Based Architectures
1
作者 Andreea Roxana Luca Tudor Florin Ursuleanu +5 位作者 Liliana Gheorghe Roxana Grigorovici Stefan Iancu Maria Hlusneac Cristina Preda Alexandru Grigorovici 《Journal of Computer and Communications》 2021年第7期8-20,共13页
Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentat... Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentation of the medical image. We aim to create a computer assisted diagnostic method, optimized by the use of deep learning (DL) and validated by a randomized controlled clinical trial, is a highly automated tool for diagnosing and staging precancerous and cervical cancer and thyroid cancers. We aim to design a high-performance deep learning model, combined from convolutional neural network (U-Net)-based architectures, for segmentation of the medical image that is independent of the type of organs/tissues, dimensions or type of image (2D/3D) and to validate the DL model in a randomized, controlled clinical trial. We used as a methodology primarily the analysis of U-Net-based architectures to identify the key elements that we considered important in the design and optimization of the combined DL model, from the U-Net-based architectures, imagined by us. Secondly, we will validate the performance of the DL model through a randomized controlled clinical trial. The DL model designed by us will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. The combined model we designed takes into account the key features of each of the architectures Overcomplete Convolutional Network Kite-Net (Kite-Net), Attention gate mechanism is an improvement added on convolutional network architecture for fast and precise segmentation of images (Attention U-Net), Harmony Densely Connected Network-Medical image Segmentation (HarDNet-MSEG). In this regard, we will create a comprehensive computer assisted diagnostic methodology validated by a randomized controlled clinical trial. The model will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. This would help drastically minimize the time and effort that specialists put into analyzing medical images, help to achieve a better therapeutic plan, and can provide a “second opinion” of computer assisted diagnosis. 展开更多
关键词 combined Model of U-Net-based architectures Medical Image Segmentation 2D/3D/CT/RMN Images
下载PDF
基于SOA-BPM的物流信息系统集成平台设计与实现 被引量:5
2
作者 邓子云 杨晓峰 陈玉林 《物流科技》 2009年第11期63-65,共3页
SOA-BPM组合架构为第三方物流企业信息系统的集成提供了新的技术组合。给出了SOA-BPM组合架构在物流信息系统集成平台应用时的系统设计情况,平台的架构分为5层:系统接口层、SOA集成层、SOA-BPM映射层、BPM层、应用层。并以仓储管理信息... SOA-BPM组合架构为第三方物流企业信息系统的集成提供了新的技术组合。给出了SOA-BPM组合架构在物流信息系统集成平台应用时的系统设计情况,平台的架构分为5层:系统接口层、SOA集成层、SOA-BPM映射层、BPM层、应用层。并以仓储管理信息系统为例描述了在平台中是如何实现业务流程处理的。 展开更多
关键词 soa-bpm组合架构 物流信息系统集成平台 总体结构 实现案例
下载PDF
公共健康视角下东北老工业社区公园“体绿结合”空间优化研究——以哈尔滨为例 被引量:10
3
作者 侯韫婧 赵晓龙 +1 位作者 战美伶 许大为 《风景园林》 2021年第5期92-98,共7页
东北老工业基地城市遗存着众多"一五"时期建成的工业社区和中东铁路,当前老工业社区公园更新承载着市民公共健康的新诉求。根据哈尔滨工业发展历程,对照非工业新社区公园,提取典型老工业社区公园使用人群的行为和空间特征,量... 东北老工业基地城市遗存着众多"一五"时期建成的工业社区和中东铁路,当前老工业社区公园更新承载着市民公共健康的新诉求。根据哈尔滨工业发展历程,对照非工业新社区公园,提取典型老工业社区公园使用人群的行为和空间特征,量化识别影响体力活动健康绩效的空间特征,阐释空间特征促进体力活动健康绩效的作用机制,提出社区公园"体绿结合"空间优化策略。旨在推动老工业社区存量改造更新,构建主动式健康干预的老工业社区空间体系。 展开更多
关键词 风景园林 公共健康 东北老工业基地 社区公园 “体绿结合”
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部