在分析 SOF M自组织特征映射神经网络原有算法的基础上 ,从提高算法收敛速度出发 ,提出了一种改进算法。该算法首先采用 C均值法从输入数据中寻找出 N 2个聚类中心 ,然后用一种启发式的方法把选取的 N2个数据点放置到一个 N× N 的...在分析 SOF M自组织特征映射神经网络原有算法的基础上 ,从提高算法收敛速度出发 ,提出了一种改进算法。该算法首先采用 C均值法从输入数据中寻找出 N 2个聚类中心 ,然后用一种启发式的方法把选取的 N2个数据点放置到一个 N× N 的空阵列中。利用这种算法 ,可以避免传统 SOF M算法中不断地用大量的数据去调整连接权的过程 ,从而快速地构造特征映射。应用这种算法 ,通过对某隧道工程围岩裂隙统计数据的快速分类、仿真判别 ,为围岩渗透性评价计算提供精确程度较高的量化依据 ,取得了较好的效果。展开更多
文摘在分析 SOF M自组织特征映射神经网络原有算法的基础上 ,从提高算法收敛速度出发 ,提出了一种改进算法。该算法首先采用 C均值法从输入数据中寻找出 N 2个聚类中心 ,然后用一种启发式的方法把选取的 N2个数据点放置到一个 N× N 的空阵列中。利用这种算法 ,可以避免传统 SOF M算法中不断地用大量的数据去调整连接权的过程 ,从而快速地构造特征映射。应用这种算法 ,通过对某隧道工程围岩裂隙统计数据的快速分类、仿真判别 ,为围岩渗透性评价计算提供精确程度较高的量化依据 ,取得了较好的效果。