期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Oxygen Scavenging Effect of LaLuO_3/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors
1
作者 冯锦锋 刘畅 +1 位作者 俞文杰 彭颖红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期108-110,共3页
Higher-s dielectric LaLuO3, deposited by molecular beam deposition, with TiN as gate stack is integrated into high-mobility Si/SiGe/SOI quantum-well p-type metal-oxide-semiconduetor field effect transistors. Threshold... Higher-s dielectric LaLuO3, deposited by molecular beam deposition, with TiN as gate stack is integrated into high-mobility Si/SiGe/SOI quantum-well p-type metal-oxide-semiconduetor field effect transistors. Threshold voltage shift and capacitance equivalent thickness shrink are observed, resulting from oxygen scavenging effect in LaLuO3 with ti-rich TiN after high temperature annealing. The mechanism of oxygen scavenging and its potential for resistive memory applications are analyzed and discussed. 展开更多
关键词 soi SiGe TIN Oxygen Scavenging Effect of LaLuO3/TiN Gate Stack in High-Mobility Si/SiGe/soi Quantum-Well transistors of in Gate
下载PDF
Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor 被引量:5
2
作者 Xiaofeng Zhao Dandan Li +1 位作者 Yang Yu Dianzhong Wen 《Journal of Semiconductors》 EI CAS CSCD 2017年第7期89-92,共4页
Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type sil... Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors(R_1, R_2, R_3 and R_4/locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator(SOI) wafer by micro electromechanical system(MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity(TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r_1 and r_2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. 展开更多
关键词 soi pressure sensor asymmetric base region transistor temperature compensation temperature coefficient of the sensitivity MEMS technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部