Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flick...Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.展开更多
In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiat...In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiation of three bias conditions. It has been found experimentally that back gate threshold shift and leakage current were greatly reduced during irradiation for hardened transistors, comparing to control ones. It has been confirmed that the improvement of total-dose properties of SOI devices is attributed to the silicon nanocrystals (nanoclusters) in buried oxides introduced by ion implantation.展开更多
The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on tota...The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.展开更多
通过模拟对ON、OFF、TG三种偏置下PD SOI NMOSFET的总剂量辐照效应进行了研究。模拟发现正沟道的最坏偏置是ON偏置,背沟道的最坏偏置与总剂量有关。当总剂量大时,背沟道的最坏偏置是OFF偏置;当总剂量小时则是TG偏置。而NMOSFET的最坏偏...通过模拟对ON、OFF、TG三种偏置下PD SOI NMOSFET的总剂量辐照效应进行了研究。模拟发现正沟道的最坏偏置是ON偏置,背沟道的最坏偏置与总剂量有关。当总剂量大时,背沟道的最坏偏置是OFF偏置;当总剂量小时则是TG偏置。而NMOSFET的最坏偏置则取决于起主要作用的是正栅还是背栅。由于辐照产生电子空穴对的过程与电场分布强相关,通过分析不同偏置下电场分布的差异确定最坏偏置的内在机制。展开更多
Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrie...Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.展开更多
Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage...Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage formation are somewhat similar. For the total dose irradiation effect, the most notable damage lies in the great increase of the off-state leakage current. As to the hot-carrier effect, most changes come from the decrease of the output characteristics curves as well as the decrease of trans-conductance. It is considered that the oxide-trapped and interface-trapped charges related to STI increase the current during irradiation, while the negative charges generated in the gate oxide, as well as the interface-trapped charges at the gate interface, cause the degradation of the hot-carrier effect. Different aspects should be considered when the device is generally hardened against these two effects.展开更多
The hardening of the buried oxide (BOX) layer of separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers against total-dose irradiation was investigated by implanting ions into the BOX layers. T...The hardening of the buried oxide (BOX) layer of separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers against total-dose irradiation was investigated by implanting ions into the BOX layers. The tolerance to total-dose irradiation of the BOX layers was characterized by the comparison of the transfer characteristics of SOI NMOS transistors before and after irradiation to a total dose of 2.7 Mrad(SiO2). The experimental results show that the implantation of silicon ions into the BOX layer can improve the tolerance of the BOX layers to total-dose irradiation. The investigation of the mechanism of the improvement suggests that the deep electron traps introduced by silicon implantation play an important role in the remarkable improvement in radiation hardness of SIMOX SOI wafers.展开更多
A solution is developed to improve the irradiation reliability of SOI NMOSFET (N-type Metal Oxide Semiconductor Field Effect Transistor). This solution, including SOI (Silicon On Insulator) wafer hardening and tra...A solution is developed to improve the irradiation reliability of SOI NMOSFET (N-type Metal Oxide Semiconductor Field Effect Transistor). This solution, including SOI (Silicon On Insulator) wafer hardening and transistor structure hardening, protects the SOI circuit from total dose irradiation effect.展开更多
This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical...This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem.展开更多
SOI CMOS技术存在许多优势,但由于存在厚的埋氧层,其总剂量效应反而比体Si器件更差,因此需进行总剂量抗辐射加固设计。对几种SOI MOSFET的栅氧、埋氧和场氧总剂量抗辐射加固的方法进行了对比较分析,指出了各自的优劣势,给出了研究方向...SOI CMOS技术存在许多优势,但由于存在厚的埋氧层,其总剂量效应反而比体Si器件更差,因此需进行总剂量抗辐射加固设计。对几种SOI MOSFET的栅氧、埋氧和场氧总剂量抗辐射加固的方法进行了对比较分析,指出了各自的优劣势,给出了研究方向。并对FLEXFET和G4-FET三维SOI器件抗辐射加固新结构进行了阐述,分析了其优越性。展开更多
本文模拟了0.25μm SOI NMOS的总剂量效应,I-V特性曲线随总剂量变化趋势与实测曲线一致。在此基础上探讨了器件在不同掺杂浓度、硅膜厚度、埋氧层厚度以及栅氧层厚度等工艺条件下的总剂量效应,分析了一定剂量条件下各项工艺引起器件性...本文模拟了0.25μm SOI NMOS的总剂量效应,I-V特性曲线随总剂量变化趋势与实测曲线一致。在此基础上探讨了器件在不同掺杂浓度、硅膜厚度、埋氧层厚度以及栅氧层厚度等工艺条件下的总剂量效应,分析了一定剂量条件下各项工艺引起器件性能变化的原因。结果表明,源漏高掺杂、薄硅膜、适当厚度的埋氧层和较薄的栅氧层均有利于提高SOI NMOS的抗总剂量效应的能力。这为器件提高抗总剂量效应设计和加固提供了一定的理论依据。展开更多
基金Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037the Science and Technology Research Project of Guangdong Province under Grant Nos 20158090901048 and 2015B090912002the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002
文摘Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.
文摘In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiation of three bias conditions. It has been found experimentally that back gate threshold shift and leakage current were greatly reduced during irradiation for hardened transistors, comparing to control ones. It has been confirmed that the improvement of total-dose properties of SOI devices is attributed to the silicon nanocrystals (nanoclusters) in buried oxides introduced by ion implantation.
文摘The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.
文摘通过模拟对ON、OFF、TG三种偏置下PD SOI NMOSFET的总剂量辐照效应进行了研究。模拟发现正沟道的最坏偏置是ON偏置,背沟道的最坏偏置与总剂量有关。当总剂量大时,背沟道的最坏偏置是OFF偏置;当总剂量小时则是TG偏置。而NMOSFET的最坏偏置则取决于起主要作用的是正栅还是背栅。由于辐照产生电子空穴对的过程与电场分布强相关,通过分析不同偏置下电场分布的差异确定最坏偏置的内在机制。
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant Nos.61006070 and 61076025)
文摘Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.
文摘Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage formation are somewhat similar. For the total dose irradiation effect, the most notable damage lies in the great increase of the off-state leakage current. As to the hot-carrier effect, most changes come from the decrease of the output characteristics curves as well as the decrease of trans-conductance. It is considered that the oxide-trapped and interface-trapped charges related to STI increase the current during irradiation, while the negative charges generated in the gate oxide, as well as the interface-trapped charges at the gate interface, cause the degradation of the hot-carrier effect. Different aspects should be considered when the device is generally hardened against these two effects.
基金Project supported by the National Fund for Distinguished Young Scholars (Grant No 59925205), the Basic Research Program of Shanghai (Grant No 02DJ14069), and the National Natural Science Foundation of China (Grant No 10305018).
文摘The hardening of the buried oxide (BOX) layer of separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers against total-dose irradiation was investigated by implanting ions into the BOX layers. The tolerance to total-dose irradiation of the BOX layers was characterized by the comparison of the transfer characteristics of SOI NMOS transistors before and after irradiation to a total dose of 2.7 Mrad(SiO2). The experimental results show that the implantation of silicon ions into the BOX layer can improve the tolerance of the BOX layers to total-dose irradiation. The investigation of the mechanism of the improvement suggests that the deep electron traps introduced by silicon implantation play an important role in the remarkable improvement in radiation hardness of SIMOX SOI wafers.
文摘A solution is developed to improve the irradiation reliability of SOI NMOSFET (N-type Metal Oxide Semiconductor Field Effect Transistor). This solution, including SOI (Silicon On Insulator) wafer hardening and transistor structure hardening, protects the SOI circuit from total dose irradiation effect.
文摘This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem.
文摘本文模拟了0.25μm SOI NMOS的总剂量效应,I-V特性曲线随总剂量变化趋势与实测曲线一致。在此基础上探讨了器件在不同掺杂浓度、硅膜厚度、埋氧层厚度以及栅氧层厚度等工艺条件下的总剂量效应,分析了一定剂量条件下各项工艺引起器件性能变化的原因。结果表明,源漏高掺杂、薄硅膜、适当厚度的埋氧层和较薄的栅氧层均有利于提高SOI NMOS的抗总剂量效应的能力。这为器件提高抗总剂量效应设计和加固提供了一定的理论依据。