期刊文献+
共找到213,280篇文章
< 1 2 250 >
每页显示 20 50 100
Multivariate Approach to Characterizing Soil Quality of Gabonese’s Ferralitic Soils
1
作者 Neil-Yohan Musadji Rolf Gaël Mabicka Obame +4 位作者 Michel Mbina Mounguengui Jean Aubin Ondo Lydie-Stella Koutika Eric Ravire Claude Geffroy 《Open Journal of Soil Science》 2024年第4期237-268,共32页
Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivaria... Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivariate soil quality indice (SQI) models, such as additive quality index (AQI), weighted quality indexes (WQI<sub>add</sub> and WQI<sub>com</sub>) and Nemoro quality index (NQI), applied to two approaches of indicator selection: total data set (TDS) and minimum data set (MDS). Physical and chemical soil indicators were extracted from the ORSTOM’s reports resulting from a sampling campaign in different provinces of Gabon. The TDS approach shows soil quality status according to eleven soil indicators extracted from the analysis of 1,059 samples from arable soil layer (0 - 30 cm depth). The results indicated that 87% of all provinces presented a very low soil quality (Q5) whatever the model. Among soil indicators, exchangeable K<sup>+</sup> and Mg<sup>2+</sup>, bulk density and C/N ratio were retained in MDS, using principal component analysis (PCA). In the MDS approach, 50 to 63% of provinces had low soil quality grades with AQI, WQI<sub>add</sub> and NQI, whereas the total was observed with WQI<sub>com</sub>. Only 25% of provinces had medium soil quality grades with AQI and NQI models, while 12.5% (NQI) and 25% (AQI) presented high quality grades. Robust statistical analyses confirmed the accuracy and validation (0.80 r P ≤ 0.016) of AQI, WQI<sub>add</sub> and NQI into the TDS and MDS approaches. The same sensitivity index value (1.53) was obtained with AQI and WQI<sub>add</sub>. However, WQI<sub>add</sub> was chosen as the best SQI model, according to its high linear regression value (R<sup>2</sup> = 0.82) between TDS and MDS. This study has important implications in decision-making on monitoring, evaluation and sustainable management of Gabonese soils in a pedoclimatic context unfavorable to plant growth. 展开更多
关键词 GABON Ferralitic soil soil Indicators Standard Score Function soil Quality Indices Sustainable soil soil Management
下载PDF
Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau
2
作者 Siqiong LUO Zihang CHEN +3 位作者 Jingyuan WANG Tonghua WU Yao XIAO Yongping QIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期717-736,共20页
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an... Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%. 展开更多
关键词 initial soil conditions soil temperature soil liquid water soil ice surface energy fluxes PERMAFROST
下载PDF
Mechanisms to explain soil liquefaction triggering,development,and persistence during an earthquake
3
作者 Fernando Teixeira 《Earthquake Science》 2024年第6期558-573,共16页
Mechanisms have been proposed to explain the triggering,development,and persistence of soil liquefaction.The mechanism explaining the horizontal failure plane(triggering)and its depth below the phreatic surface is gov... Mechanisms have been proposed to explain the triggering,development,and persistence of soil liquefaction.The mechanism explaining the horizontal failure plane(triggering)and its depth below the phreatic surface is governed by the flux properties and effective stress at that plane.At the failure plane,the pore water pressure was higher than the effective stress,and the volume change was the highest.The pore water pressure is a function of the soil profile features(particularly the phreatic zone width)and bedrock motion(horizontal acceleration).The volume change at the failure plane is a function of the intrinsic permeability of the soil and bedrock displacement.The failure plane was predicted to occur during the oscillation with the highest amplitude,disregarding further bedrock motion,which was consistent with low seismic energy densities.Two mechanisms were proposed to explain the persistence of soil liquefaction.The first is the existence of low-permeability layers in the depth range in which the failure planes are predicted to occur.The other allows for the persistence and development of soil liquefaction;it is consistent with homogeneous soils and requires water inflow from bedrock water springs.The latter explains many of the features of soil liquefaction observed during earthquakes,namely,surficial effects,“instant”liquefaction,and the occurrence of short-and long-term changes in the level of the phreatic surfaces.This model(hypothesis),the relationship between the flux characteristics and loss of soil shear strength,provides self-consistent constraints on the depth below the phreatic surfaces where the failure planes are observed(expected to occur).It requires further experimental and observational evidence.Similar reasoning can be used to explain other saturated soil phenomena. 展开更多
关键词 soil liquefaction triggering soil liquefaction persistence intrinsic soil permeability impervious soil layers bedrock water springs
下载PDF
Effects of land-use patterns on soil microbial diversity and composition in the Loess Plateau,China
4
作者 ZHANG Jian GUO Xiaoqun +2 位作者 SHAN Yujie LU Xin CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第3期415-430,共16页
In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi... In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas. 展开更多
关键词 abandoned lands land-use pattern soil property diversity of soil microbe soil microbial community
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
5
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Impact of wetting-drying cycles and acidic conditions on the soil aggregate stability of yellow‒brown soil
6
作者 XIA Zhenyao NI Yuanzhen +2 位作者 LIU Deyu WANG Di XIAO Hai 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2075-2090,共16页
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c... Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA. 展开更多
关键词 Yellow‒brown soil Wetting-drying cycles Acidic conditions soil aggregate stability soil disintegration
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields
7
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China
8
作者 Wenjie Yang Jie Yu +9 位作者 Yanhang Li Bingli Jia Longgang Jiang Aijing Yuan Yue Ma Ming Huang Hanbing Cao Jinshan Liu Weihong Qiu Zhaohui Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2421-2433,共13页
The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status... The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production. 展开更多
关键词 fertilization method dryland wheat soil nutrient critical value soil nitrogen topsoil nutrients
下载PDF
A dynamic soil freezing characteristic curve model for frozen soil
9
作者 Xiaokang Li Xu Li Jiankun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3339-3352,共14页
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami... The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC. 展开更多
关键词 Frozen soils Unsaturated soils soil freezing characteristic curve(SFCC) Mathematic models
下载PDF
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India
10
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 soil erosion soil organic carbon Rainfall-runoff erosivity factor soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
11
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM soil remediation soil improvement
下载PDF
Near-Surface Soil Chemical Properties as Affected by Cover Crops Over Time in the Lower Mississippi River Valley
12
作者 Cooper Fanning Kristofor R. Brye +3 位作者 Michael B. Daniels Trenton L. Roberts Samuel Fernandes Lisa S. Wood 《Agricultural Sciences》 2024年第9期1035-1056,共22页
Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soi... Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health. 展开更多
关键词 ARKANSAS Cover Crops soil Properties soil Organic Matter soil Health Score
下载PDF
A new approach to pedestal differentiation for soil loss estimation-a case study from a burnt area in north-central Portugal
13
作者 Frank G.A.Verheijen Martinho A.S.Martins +1 位作者 Sergio A.Prats Jan J.Keizer 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期45-54,共10页
Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the firs... Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals. 展开更多
关键词 soil pedestals MULCH WILDFIRE soil erosion CHAR
下载PDF
Temporal and environmental factors drive community structure and function of methanotrophs in volcanic forest soils
14
作者 Rusong Chai Hongjie Cao +3 位作者 Qingyang Huang Lihong Xie Fan Yang Hongbin Yin 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期1-13,共13页
Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The s... Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils. 展开更多
关键词 METHANOTROPHS pmo A soil development stage Volcanoes Forest soils
下载PDF
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
15
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine soil stoichiometry soil enzyme activities DISTANCE GRASSLAND
下载PDF
Soil resilience assessment using soil profile descriptions and Analytic Hierarchy Process in Mediterranean mountains considering diverse fire occurrences
16
作者 Jesús RODRIGO-COMINO 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2517-2532,共16页
Wildfires are complex natural phenomena that exert significant impacts on landscapes,societies,and economies.Understanding the concept of resilience is crucial in mitigating its possible negative impacts,as it involve... Wildfires are complex natural phenomena that exert significant impacts on landscapes,societies,and economies.Understanding the concept of resilience is crucial in mitigating its possible negative impacts,as it involves preparing for,responding to,and recovering from wildfires.This research aims to demonstrate the utility of in situ soil profile description in assessing land use resilience using an Analytic Hierarchy Process(AHP)through an expert panel survey.The study examines a catchment located in the Balearic Islands,considering two fire occurrences(once and twice),comparing abandoned agricultural terraces and natural hillslopes.The results demonstrated that the priority ranking of variables to assess soil profile resilience against wildfires,determined by a panel of 10 experts,identified horizon depth(25.1%),slope inclination(21.5%),and hydrological connectivity(16.6%)as the most crucial factors.Other variables,such as number and size of roots,structure of pedal soil material,size class structure,and rock fragments,also contributed to resilience but to a lesser extent,with scores ranging from 5.7%to 9.6%.Analyzing the priorities established by the experts using AHP,the results showed that the least resilient soil horizon was H1 of the control hillslope,especially under high and low connectivity processes,which aligned with the loss of superficial soil horizons after one and two wildfires.Hillslopes showed greater changes in resilience after occurring wildfires compared to terraces,with the most significant alterations occurring after the second wildfire event.This study addresses a significant knowledge gap in the field by highlighting the interconnectedness of wildfires,resilience,and land use,providing insights into land management strategies for wildfire-prone regions. 展开更多
关键词 soil profiles soil geography WILDFIRES AHP Land management Expert panel survey
下载PDF
The potential for an old-growth forest to store carbon in the topsoil:A case study at Sasso Fratino,Italy
17
作者 Tommaso Chiti Nicola Benilli +1 位作者 Giovanni Mastrolonardo Giacomo Certini 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期23-32,共10页
There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of ... There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of information on their actual potential for C sequestration.To further understand this,soil organic carbon(SOC)was measured in one of Italy's best-preserved old-growth forests,the Sasso Fratino Integral Nature Reserve.This reserve is on the World Heritage List along with other ancient beech forests of Europe,and it is virtually untouched due to the steepness of the terrain,even before legal constraints were imposed.Although the sandstone-derived soils are often shallow,they are rich in organic matter.However,no quantification had been carried out.By systematically sampling the topsoil across the forest,we accurately determined the average amount of SOC(62.0±16.9 Mg ha^(–1))and nitrogen(4.0±1.2 Mg ha^(–1))in the top 20 cm.Using the CENTURY model,future dynamics of SOC stocks were predicted to 2050 according to two climate scenarios,A1F1 and B2,the first of high concern and the second more optimistic.The model projected an increase of 0.2 and 0.3 Mg ha^(–1)a^(–1)by 2030 under the A1F1 and B2 scenarios,respectively,suggesting that the topsoil in old-growth forests does not reach equilibrium but continues accumulating SOC.However,from 2030 to 2050,a decline in SOC accumulation is predicted,indicating SOC net loss at high altitudes under the worst-case scenario.This study confirms that soils in oldgrowth forests play a significant role in carbon sequestration.It also suggests that climate change may affect the potential of these forests to store SOC not only in the long term but also in the coming years. 展开更多
关键词 Carbon sequestration CENTURY model Climate change Forest soil soil nitrogen
下载PDF
Improving model performance in mapping cropland soil organic matter using time-series remote sensing data
18
作者 Xianglin Zhang Jie Xue +5 位作者 Songchao Chen Zhiqing Zhuo Zheng Wang Xueyao Chen Yi Xiao Zhou Shi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2820-2841,共22页
Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effect... Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effective management policies.As a spatial information prediction technique,digital soil mapping(DSM)has been widely used to spatially map soil information at different scales.However,the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance.To overcome this limitation,this study systematically assessed a framework of“information extractionfeature selection-model averaging”for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou,China in 2021.The results showed that using the framework of dynamic information extraction,feature selection and model averaging could efficiently improve the accuracy of the final predictions(R^(2):0.48 to 0.53)without having obviously negative impacts on uncertainty.Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM,which improved the R^(2)of random forest from 0.44 to 0.48 and the R^(2)of extreme gradient boosting from 0.37to 0.43.Forward recursive feature selection(FRFS)is recommended when there are relatively few environmental covariates(<200),whereas Boruta is recommended when there are many environmental covariates(>500).The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty.When the structures of initial prediction models are similar,increasing in the number of averaging models did not have significantly positive effects on the final predictions.Given the advantages of these selected strategies over information extraction,feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales,so this approach can provide more reliable references for soil conservation policy-making. 展开更多
关键词 CROPLAND soil organic matter digital soil mapping machine learning feature selection model averaging
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
19
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 Green manure STRAW MANURE soil organic carbon soil quality Crop production Diversified cropping
下载PDF
Effects of long-term fencing on soil microbial community structure and function in the desert steppe,China
20
作者 PAN Yaqing KANG Peng +2 位作者 QU Xuan RAN Yichao LI Xinrong 《Journal of Arid Land》 SCIE CSCD 2024年第3期431-446,共16页
One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this... One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas. 展开更多
关键词 desert steppe fence management Caragana korshinskii soil physical-chemical property soil microorganism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部