期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MapReduce的Web标签SOINN聚类算法
被引量:
3
1
作者
王洁
于颜硕
+1 位作者
周宽久
侯刚
《计算机科学》
CSCD
北大核心
2014年第12期197-201,共5页
Web标签有助于用户根据自己特定的兴趣完成信息资源的分类、组织和检索。然而,正是由于协同标记系统特有的公开性、自由化的特点,采用其对信息资源进行描述、组织、分类和检索,存在着信息描述不精确、标签组织混乱和标签语意模糊等问题...
Web标签有助于用户根据自己特定的兴趣完成信息资源的分类、组织和检索。然而,正是由于协同标记系统特有的公开性、自由化的特点,采用其对信息资源进行描述、组织、分类和检索,存在着信息描述不精确、标签组织混乱和标签语意模糊等问题。在此背景下提出了3种基于特征向量表示法(FVR)的Web标签SOINN聚类算法:基于资源的特征向量表示法、基于其他共现标签的特征向量表示法和基于全集共现标签的特征向量表示法。同时应用MapReduce框架将SOINN算法进行并行化。实验表明,当类中心数量超过2000时,3种分布式聚类FVR算法的召回率和准确度优于原始算法,可获得很好的加速比。从而证明此分布式聚类算法具有很好的可扩展性,可以用于更为海量的Web日志聚类分析系统。
展开更多
关键词
Web标签聚类
soinn
算法
MAPREDUCE
下载PDF
职称材料
基于改进SOINN算法的恶意软件增量检测方法
被引量:
3
2
作者
张斌
李立勋
董书琴
《网络与信息安全学报》
2019年第6期21-30,共10页
针对基于批量学习的恶意软件检测方法存在检测模型动态更新困难、运算存储开销大的问题,将改进的SOINN算法与有监督分类器有机结合,利用SOINN算法的增量学习特性赋予恶意软件检测模型动态更新能力,有效降低运算存储开销。首先对SOINN算...
针对基于批量学习的恶意软件检测方法存在检测模型动态更新困难、运算存储开销大的问题,将改进的SOINN算法与有监督分类器有机结合,利用SOINN算法的增量学习特性赋予恶意软件检测模型动态更新能力,有效降低运算存储开销。首先对SOINN算法进行改进:在SOINN算法竞争学习周期内,根据全排列思想搜索所有样本输入次序下神经元的权重调节量,计算所有权重调节量的平均值作为神经元最终权重调节量,避免不同样本输入次序影响训练所得神经网络的稳定性,使所得神经网络更能反映原始数据本质特征,从而提高神经网络针对恶意软件检测的精度。然后采用非负矩阵分解和Z-score归一化对数据进行预处理,将恶意软件行为特征向量从高维高数量级转换至低维低数量级,在提高检测速度的同时有效降低高数量级维度对特征学习的不利影响,进一步提高检测准确性。实验结果表明,所提方法支持检测模型动态更新,对未知新样本的检测准确率显著高于传统检测方法,且运算存储开销更小。
展开更多
关键词
soinn
算法
恶意软件检测
神经网络
增量学习
入侵检测
下载PDF
职称材料
题名
基于MapReduce的Web标签SOINN聚类算法
被引量:
3
1
作者
王洁
于颜硕
周宽久
侯刚
机构
大连理工大学嵌入式系统工程系
出处
《计算机科学》
CSCD
北大核心
2014年第12期197-201,共5页
基金
国家自然科学基金可信软件研究课题(61272174)
中央高校基本科研业务费专项基金(DUT14QY32)资助
文摘
Web标签有助于用户根据自己特定的兴趣完成信息资源的分类、组织和检索。然而,正是由于协同标记系统特有的公开性、自由化的特点,采用其对信息资源进行描述、组织、分类和检索,存在着信息描述不精确、标签组织混乱和标签语意模糊等问题。在此背景下提出了3种基于特征向量表示法(FVR)的Web标签SOINN聚类算法:基于资源的特征向量表示法、基于其他共现标签的特征向量表示法和基于全集共现标签的特征向量表示法。同时应用MapReduce框架将SOINN算法进行并行化。实验表明,当类中心数量超过2000时,3种分布式聚类FVR算法的召回率和准确度优于原始算法,可获得很好的加速比。从而证明此分布式聚类算法具有很好的可扩展性,可以用于更为海量的Web日志聚类分析系统。
关键词
Web标签聚类
soinn
算法
MAPREDUCE
Keywords
Web tag clustering
soinn algorithm
MapReduce
分类号
TP302 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于改进SOINN算法的恶意软件增量检测方法
被引量:
3
2
作者
张斌
李立勋
董书琴
机构
信息工程大学
河南省信息安全重点实验室
出处
《网络与信息安全学报》
2019年第6期21-30,共10页
基金
河南省基础与前沿技术研究计划基金资助项目(No.2014302903)
信息工程大学新兴科研方向培育基金资助项目(No.2016604703)
文摘
针对基于批量学习的恶意软件检测方法存在检测模型动态更新困难、运算存储开销大的问题,将改进的SOINN算法与有监督分类器有机结合,利用SOINN算法的增量学习特性赋予恶意软件检测模型动态更新能力,有效降低运算存储开销。首先对SOINN算法进行改进:在SOINN算法竞争学习周期内,根据全排列思想搜索所有样本输入次序下神经元的权重调节量,计算所有权重调节量的平均值作为神经元最终权重调节量,避免不同样本输入次序影响训练所得神经网络的稳定性,使所得神经网络更能反映原始数据本质特征,从而提高神经网络针对恶意软件检测的精度。然后采用非负矩阵分解和Z-score归一化对数据进行预处理,将恶意软件行为特征向量从高维高数量级转换至低维低数量级,在提高检测速度的同时有效降低高数量级维度对特征学习的不利影响,进一步提高检测准确性。实验结果表明,所提方法支持检测模型动态更新,对未知新样本的检测准确率显著高于传统检测方法,且运算存储开销更小。
关键词
soinn
算法
恶意软件检测
神经网络
增量学习
入侵检测
Keywords
soinn algorithm
malware detection
neural network
incremental learning
intrusion detection
分类号
TP393.08 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MapReduce的Web标签SOINN聚类算法
王洁
于颜硕
周宽久
侯刚
《计算机科学》
CSCD
北大核心
2014
3
下载PDF
职称材料
2
基于改进SOINN算法的恶意软件增量检测方法
张斌
李立勋
董书琴
《网络与信息安全学报》
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部