The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ...The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.展开更多
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th...Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st...The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.展开更多
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista...In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.展开更多
The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty c...The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
In this paper, we apply clustering analysis of data mining into power system. We adapt K-means clustering algorithm to analyze customer load, analyzing similar behavior between customer of electricity, and we adapt pr...In this paper, we apply clustering analysis of data mining into power system. We adapt K-means clustering algorithm to analyze customer load, analyzing similar behavior between customer of electricity, and we adapt principal component analysis to get the clustering result visible, Simulation and analysis using matlab, and this well verify cluster rationality. The conclusion of this paper can provide important basis to the peak for the power system, stable operation the power system security.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ...Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.展开更多
Aiming at the poor performance of speech signal detection at low signal-to-noise ratio(SNR),a method is proposed to detect active speech frames based on multi-window time-frequency(T-F)diagrams.First,the T-F diagram o...Aiming at the poor performance of speech signal detection at low signal-to-noise ratio(SNR),a method is proposed to detect active speech frames based on multi-window time-frequency(T-F)diagrams.First,the T-F diagram of the signal is calculated based on a multi-window T-F analysis,and a speech test statistic is constructed based on the characteristic difference between the signal and background noise.Second,the dynamic double-threshold processing is used for preliminary detection,and then the global double-threshold value is obtained using K-means clustering.Finally,the detection results are obtained by sequential decision.The experimental results show that the overall performance of the method is better than that of traditional methods under various SNR conditions and background noises.This method also has the advantages of low complexity,strong robustness,and adaptability to multi-national languages.展开更多
Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-...Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.展开更多
To categorize the nations to reflect the development status, to date, there are many conceptual frameworks. The Human Development index (HDI) that is published by the United Nations Development Programme is widely acc...To categorize the nations to reflect the development status, to date, there are many conceptual frameworks. The Human Development index (HDI) that is published by the United Nations Development Programme is widely accepted and practiced by many people such as academicians, politicians, and donor organizations. However, though the development of HDI has gone through many revisions since its formulation in 1990, even the current version of the index formulation published in 2016 needs research to better understand and to gap-fill the knowledge base that can enhance the index formulation to facilitate the direction of attention such as release of funds. Therefore, in this paper, based on principal component analysis and K-means clustering algorithm, the data that reflect the measures of life expectancy index (LEI), education index (EI), and income index (II) are analyzed to categorize and to rank the member states of the UN using R statistical software package, an open source extensible programming language for statistical computing and graphics. The outcome of the study shows that the proportion of total eigen value (i.e., proportion of total variance) explained by PCA-1 (i.e., first principal component) accounts for more than 85% of the total variation. Moreover, the proportion of total eigen value explained by PCA-1 increases with time (i.e., yearly) though the amount of increase with time is not significant. However, the proportions of total eigen value explained by PCA-2 and PCA-3 decrease with time. Therefore, the loss of information in choosing PCA-1 to represent the chosen explanatory variables (i.e., LEI, EI, and II) may diminish with time if the trend of increasing pattern of proportion of total eigen value explained by PCA-1 with time continues in the future as well. On the other hand, the correlation between EI and PCA-1 increases with time although the magnitude of increase is not that significant. This same trend is observed in II as well. However, in contrast to these observations, the correlation between PCA-1 and LEI decreases with time. These findings imply that the contributions of EI and II to PCA-1 increase with time, but the contribution of LEI to PCA-1 decreases with time. On top of these, as per Hopkins statistic, the clusterability of the information conveyed by PCA-1 alone is far better than the clusterability of the information conveyed by PCA scores (i.e., PCA-1, PCA-2, and PCA-3) and the explanatory variables. Therefore, choosing PCA-1 to represent the chosen explanatory variables is becoming more concrete.展开更多
采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱...采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各高粱品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,并对31个高粱品种抗旱性排序。通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10号等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。展开更多
文摘The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2018YFE0301104 and 2018YFE0301100)National Natural Science Foundation of China(Nos.12075096 and 51821005)。
文摘Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
文摘The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.
文摘In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.
文摘The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘In this paper, we apply clustering analysis of data mining into power system. We adapt K-means clustering algorithm to analyze customer load, analyzing similar behavior between customer of electricity, and we adapt principal component analysis to get the clustering result visible, Simulation and analysis using matlab, and this well verify cluster rationality. The conclusion of this paper can provide important basis to the peak for the power system, stable operation the power system security.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
文摘Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.
基金The National Natural Science Foundation of China(No.12174053,91938203,11674057,11874109)the Fundamental Research Funds for the Central Universities(No.2242021k30019).
文摘Aiming at the poor performance of speech signal detection at low signal-to-noise ratio(SNR),a method is proposed to detect active speech frames based on multi-window time-frequency(T-F)diagrams.First,the T-F diagram of the signal is calculated based on a multi-window T-F analysis,and a speech test statistic is constructed based on the characteristic difference between the signal and background noise.Second,the dynamic double-threshold processing is used for preliminary detection,and then the global double-threshold value is obtained using K-means clustering.Finally,the detection results are obtained by sequential decision.The experimental results show that the overall performance of the method is better than that of traditional methods under various SNR conditions and background noises.This method also has the advantages of low complexity,strong robustness,and adaptability to multi-national languages.
文摘Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.
文摘To categorize the nations to reflect the development status, to date, there are many conceptual frameworks. The Human Development index (HDI) that is published by the United Nations Development Programme is widely accepted and practiced by many people such as academicians, politicians, and donor organizations. However, though the development of HDI has gone through many revisions since its formulation in 1990, even the current version of the index formulation published in 2016 needs research to better understand and to gap-fill the knowledge base that can enhance the index formulation to facilitate the direction of attention such as release of funds. Therefore, in this paper, based on principal component analysis and K-means clustering algorithm, the data that reflect the measures of life expectancy index (LEI), education index (EI), and income index (II) are analyzed to categorize and to rank the member states of the UN using R statistical software package, an open source extensible programming language for statistical computing and graphics. The outcome of the study shows that the proportion of total eigen value (i.e., proportion of total variance) explained by PCA-1 (i.e., first principal component) accounts for more than 85% of the total variation. Moreover, the proportion of total eigen value explained by PCA-1 increases with time (i.e., yearly) though the amount of increase with time is not significant. However, the proportions of total eigen value explained by PCA-2 and PCA-3 decrease with time. Therefore, the loss of information in choosing PCA-1 to represent the chosen explanatory variables (i.e., LEI, EI, and II) may diminish with time if the trend of increasing pattern of proportion of total eigen value explained by PCA-1 with time continues in the future as well. On the other hand, the correlation between EI and PCA-1 increases with time although the magnitude of increase is not that significant. This same trend is observed in II as well. However, in contrast to these observations, the correlation between PCA-1 and LEI decreases with time. These findings imply that the contributions of EI and II to PCA-1 increase with time, but the contribution of LEI to PCA-1 decreases with time. On top of these, as per Hopkins statistic, the clusterability of the information conveyed by PCA-1 alone is far better than the clusterability of the information conveyed by PCA scores (i.e., PCA-1, PCA-2, and PCA-3) and the explanatory variables. Therefore, choosing PCA-1 to represent the chosen explanatory variables is becoming more concrete.
文摘采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各高粱品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,并对31个高粱品种抗旱性排序。通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10号等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。