期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SOM-Kmeans算法的司机驾驶风格研究 被引量:1
1
作者 罗雲潇 张海瑞 +2 位作者 张振京 宋业栋 屈亚祥 《时代汽车》 2023年第8期189-192,共4页
本文以车辆历史运行物理参数为研究对象,使用SOM-Kmeans聚类模型识别出司机的驾驶风格,为发动机经济优化提供实际指导意义。首先基于K-means聚类优先识别出了九种行驶工况,从中选取加速行为对应的三类标签以驾驶循环为单位做特征统计;... 本文以车辆历史运行物理参数为研究对象,使用SOM-Kmeans聚类模型识别出司机的驾驶风格,为发动机经济优化提供实际指导意义。首先基于K-means聚类优先识别出了九种行驶工况,从中选取加速行为对应的三类标签以驾驶循环为单位做特征统计;随后利用因子分析对数据降维,并通过SOM-Kmeans模型进行聚类,得到温和型、普通型和激进型三种类别的驾驶风格。 展开更多
关键词 行驶工况 驾驶风格 因子分析 som-kmeans
下载PDF
基于无监督聚类分析的激进换道行为识别方法
2
作者 王婉琦 程国柱 徐亮 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第2期166-178,共13页
为有效指导驾驶人采取更安全的换道行为,本文提出基于改进的自组织映射神经网络(SOM-Kmeans)聚类分析的激进换道行为识别方法。通过模拟驾驶设备和眼动仪获取驾驶数据和眼动状态,运用变点检测算法结合方向盘转角和横向注视位置从多模态... 为有效指导驾驶人采取更安全的换道行为,本文提出基于改进的自组织映射神经网络(SOM-Kmeans)聚类分析的激进换道行为识别方法。通过模拟驾驶设备和眼动仪获取驾驶数据和眼动状态,运用变点检测算法结合方向盘转角和横向注视位置从多模态数据集中提取换道行为事件数据,进而提取驾驶人换道行为关键特征参数,运用SOM-Kmeans聚类分析识别激进换道行为。将SOM-Kmeans聚类方法分别与基于密度的聚类算法(DBSCAN)及模糊C均值聚类算法(FCM)比较,分析激进换道行为的识别效果。研究结果表明:SOM-Kmeans能够将激进换道行为划分为紧急换道和挤车换道两种类型,并建立相应的行为指标和阈值,当换道过程中加速度波动大于8.22 m·s^(-3)且方向盘转角大于0.83 (°)·s^(-1),识别此次换道为激进换道行为;在激进换道行为的基础上,当换道间隙小于7.5 m且换道持续时间大于10.3 s时,识别此次换道为挤车换道,否则,为紧急换道行为。挤车换道行为多出现在拥堵较严重的强制换道中,紧急换道行为多出现在交通流环境较好的自由换道中。本文提出的识别方法的准确率为92.5%,与传统聚类分析相比,本文提出的激进换道行为识别方法能够更加细致地识别激进换道行为的种类,研究结果可作为评估驾驶人是否存在危险换道行为和衡量驾驶人换道习惯的参考标准,同时,该两次聚类结果可作为激进型换道行为的参考标准。 展开更多
关键词 智能交通 激进换道行为识别 som-kmeans聚类算法 城市道路 模拟驾驶
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部