Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as t...Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized.展开更多
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
文摘Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized.
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。