A spectrally flat mid-infrared supercontinuum(MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier(HDZFA). A broadband fiber-based SC covering the ...A spectrally flat mid-infrared supercontinuum(MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier(HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser,the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm(770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper,to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.展开更多
基金National Natural Science Foundation of China(12175254,U1832119)National Key R&D Program of China(2021YFE0104800)+2 种基金International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)International Cooperation Project of Shanghai Science and Technology Commission(20520750200)National Centre for Research and Development(WPC2/1/SCAPOL/2021)。
基金National Natural Science Foundation of China(NSFC)(61435009)
文摘A spectrally flat mid-infrared supercontinuum(MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier(HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser,the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm(770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper,to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.