The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is abs...The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is absolutely different from that at low temperature one. The hot band texture includes a strong α-fiber as well as a weak γ-fiber after ferritic hot rolling and low temperature coiling. Both of them intensify after cold rolling and a γ-fiber with peak at {111}〈112〉 is the main texture of annealed samples. However, the main component of the hot band texture after high temperature coiling is v-fiber. After cold rolling, the intensity of γ texture reduces; α fiber (except {111}〈110〉 component) intensifies and a strong and well-proportioned γ-fiber forms in the annealed samples.展开更多
The strength-to-weight ratio is an important property of high-strength low-alloy(HSLA)steel in pipeline,whose precipitation strengthening can be improved.The final rolling temperature(FRT)and coiling temperature(CT)ar...The strength-to-weight ratio is an important property of high-strength low-alloy(HSLA)steel in pipeline,whose precipitation strengthening can be improved.The final rolling temperature(FRT)and coiling temperature(CT)are the key process parameters in the control of precipitates and microstructure.Continuous cooling rate was fixed at 10℃/s,and the effects of deformation and coiling temperatures on precipitates and microstructure of Ti-Nb microalloyed HSLA steel were investigated through thermo-mechanical controlled processing on Gleeble 3500.The microstructure is mainly acicular ferrite with high density dislocation and several microns scale.The size and volume fraction of the precipitates were studied under transmission electron microscopy.The results showed that the diameter of the precipitates was in the range between 4 and 240 nm.The optimized combination of parameters is FRT of 820℃and CT of 550℃,and the volume fraction of precipitates obtained under this process is 0.59%.展开更多
The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling te...The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network.展开更多
The influence of the finish rolling temperature on the microstructure and texture evolution of Nb and B micro-alloyed ultra purified Cr17 ferritic stainless steels was investigated. The hot rolled bands were produced ...The influence of the finish rolling temperature on the microstructure and texture evolution of Nb and B micro-alloyed ultra purified Cr17 ferritic stainless steels was investigated. The hot rolled bands were produced by conventional rolling process and the finish rolling at relatively low temperatures or "warm rolling". The microstructure was observed by optical microscopy, scanning electron microscopy and transmission electron microscopy, and X-ray diffraction was used to characterize the texture evolution processes. The results showed that as compared to conventional hot rolling process, the warm rolling has led to the refined and homogeneous microstructure and uniform recrystallization texture along γ-fiber in final sheets, indicating that the finish rolling at relatively low temperatures can be the effective way to improve significantly the formability of final sheets.展开更多
The correlation among finish rolling temperature (FRT),microstructure and mechanical property of the high grade pipeline steel was investigated in this study.The microstructure of the steels with different finish roll...The correlation among finish rolling temperature (FRT),microstructure and mechanical property of the high grade pipeline steel was investigated in this study.The microstructure of the steels with different finish rolling temperatures was observed with scanning electronic microscope (SEM) and transmission electronic microscope (TEM).The martensite/austenite (M/A) islands distribution was fixed by colour metallography,and the mechanical properties of the steels were tested with quasi-static tensile testing machine.The result shows that the fraction of M/A island increased with the finish rolling temperature decreasing,and when the finish rolling temperature is 800℃,the mechanical properties are the best.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
基金National Natural Science Foundation of China for financial support, under Grant No. 50104004.
文摘The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is absolutely different from that at low temperature one. The hot band texture includes a strong α-fiber as well as a weak γ-fiber after ferritic hot rolling and low temperature coiling. Both of them intensify after cold rolling and a γ-fiber with peak at {111}〈112〉 is the main texture of annealed samples. However, the main component of the hot band texture after high temperature coiling is v-fiber. After cold rolling, the intensity of γ texture reduces; α fiber (except {111}〈110〉 component) intensifies and a strong and well-proportioned γ-fiber forms in the annealed samples.
基金supported by Science and Technology Innovation Cooperation Project between China and South Africa(2017YFE0113400).
文摘The strength-to-weight ratio is an important property of high-strength low-alloy(HSLA)steel in pipeline,whose precipitation strengthening can be improved.The final rolling temperature(FRT)and coiling temperature(CT)are the key process parameters in the control of precipitates and microstructure.Continuous cooling rate was fixed at 10℃/s,and the effects of deformation and coiling temperatures on precipitates and microstructure of Ti-Nb microalloyed HSLA steel were investigated through thermo-mechanical controlled processing on Gleeble 3500.The microstructure is mainly acicular ferrite with high density dislocation and several microns scale.The size and volume fraction of the precipitates were studied under transmission electron microscopy.The results showed that the diameter of the precipitates was in the range between 4 and 240 nm.The optimized combination of parameters is FRT of 820℃and CT of 550℃,and the volume fraction of precipitates obtained under this process is 0.59%.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300604)the National Nature Science Foundation of China(51801011)+1 种基金the National Materials Corrosion and Protection Data Center,the State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K201908)the Fundamental Research Funds for the Central Universities(FRF-TP-18-026A1)。
文摘The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network.
基金supported by the National Natural Science Foundation of China (No.50734002)Baosteel and the Young Scientist Project of National Natural Science Foundation of China (No.51004035)
文摘The influence of the finish rolling temperature on the microstructure and texture evolution of Nb and B micro-alloyed ultra purified Cr17 ferritic stainless steels was investigated. The hot rolled bands were produced by conventional rolling process and the finish rolling at relatively low temperatures or "warm rolling". The microstructure was observed by optical microscopy, scanning electron microscopy and transmission electron microscopy, and X-ray diffraction was used to characterize the texture evolution processes. The results showed that as compared to conventional hot rolling process, the warm rolling has led to the refined and homogeneous microstructure and uniform recrystallization texture along γ-fiber in final sheets, indicating that the finish rolling at relatively low temperatures can be the effective way to improve significantly the formability of final sheets.
文摘The correlation among finish rolling temperature (FRT),microstructure and mechanical property of the high grade pipeline steel was investigated in this study.The microstructure of the steels with different finish rolling temperatures was observed with scanning electronic microscope (SEM) and transmission electronic microscope (TEM).The martensite/austenite (M/A) islands distribution was fixed by colour metallography,and the mechanical properties of the steels were tested with quasi-static tensile testing machine.The result shows that the fraction of M/A island increased with the finish rolling temperature decreasing,and when the finish rolling temperature is 800℃,the mechanical properties are the best.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.