Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC...BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni...This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implement...BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implementation in clinical practice is still far,with many issues related to the methodological quality of radiomic studies.AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score(RQS).METHODS A systematic literature search of PubMed,Google Scholar,and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023.The methodological quality of radiomic studies was assessed using the RQS tool.Spearman’s correlation(ρ)analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies.The level of statistical significance was set at P<0.05.RESULTS One hundred and twenty-seven articles were included,of which 43 focused on HCC prognosis,39 on prediction of pathological findings,16 on prediction of the expression of molecular markers outcomes,18 had a diagnostic purpose,and 11 had multiple purposes.The mean RQS was 8±6.22,and the corresponding percentage was 24.15%±15.25%(ranging from 0.0% to 58.33%).RQS was positively correlated with journal impact factor(IF;ρ=0.36,P=2.98×10^(-5)),5-years IF(ρ=0.33,P=1.56×10^(-4)),number of patients included in the study(ρ=0.51,P<9.37×10^(-10))and number of radiomics features extracted in the study(ρ=0.59,P<4.59×10^(-13)),and time of publication(ρ=-0.23,P<0.0072).CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients,our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.展开更多
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen...Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.展开更多
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat...In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-con...AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.展开更多
The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing i...The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.展开更多
BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindicatio...BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.展开更多
BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation gr...BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.展开更多
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
基金support from the National Natural Science Foundation of China(Nos.62205259,62075175,61975254,62375212,62005203 and 62105254)the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology(No.B022420004)the Fundamental Research Funds for the Central Universities(No.ZYTS23125).
文摘This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金Supported by the“Ricerca Corrente”Grant from Italian Ministry of Health,No.IRCCS SYNLAB SDN.
文摘BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implementation in clinical practice is still far,with many issues related to the methodological quality of radiomic studies.AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score(RQS).METHODS A systematic literature search of PubMed,Google Scholar,and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023.The methodological quality of radiomic studies was assessed using the RQS tool.Spearman’s correlation(ρ)analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies.The level of statistical significance was set at P<0.05.RESULTS One hundred and twenty-seven articles were included,of which 43 focused on HCC prognosis,39 on prediction of pathological findings,16 on prediction of the expression of molecular markers outcomes,18 had a diagnostic purpose,and 11 had multiple purposes.The mean RQS was 8±6.22,and the corresponding percentage was 24.15%±15.25%(ranging from 0.0% to 58.33%).RQS was positively correlated with journal impact factor(IF;ρ=0.36,P=2.98×10^(-5)),5-years IF(ρ=0.33,P=1.56×10^(-4)),number of patients included in the study(ρ=0.51,P<9.37×10^(-10))and number of radiomics features extracted in the study(ρ=0.59,P<4.59×10^(-13)),and time of publication(ρ=-0.23,P<0.0072).CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients,our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
基金support from the Sichuan Science and Technology Program(2019ZDZX0036)the support from the Analytical&Testing Center of Sichuan University.
文摘Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.
基金supported by the National Key R&D Program of China(No.2020YFA0710700)the National Natural Science Foundation of China(Nos.51873201 and 82172071)+2 种基金Key Research and Development Program of Anhui Province(No.202104b11020025)the Fundamental Research Funds for the Central Universities(No.YD2060002015)the CAS Youth Interdisciplinary Team(No.JCTD-2021-08).
文摘In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
基金Supported by National Natural Science Foundation of China(No.82070998)Young Scientists Fund of the National Natural Science Foundation of China(No.82101174)+3 种基金Program of Beijing Hospitals Authority(No.XMLX202103)Program of Beijing Municipal Science&Technology Commission(No.Z201100005520044)Capital Health Development Research Special Project(No.2022-1-2053)Beijing Hospitals Authority Youth Programme(No.QML20230205).
文摘AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.
文摘The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.
基金Supported by Beijing Hospitals Authority Youth Program,No.QML20231103Beijing Hospitals Authority Ascent Plan,No.DFL20191103National Key R&D Program of China,No.2023YFC3402805.
文摘BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.
基金the Fujian Province Clinical Key Specialty Construction Project,No.2022884Quanzhou Science and Technology Plan Project,No.2021N034S+1 种基金The Youth Research Project of Fujian Provincial Health Commission,No.2022QNA067Malignant Tumor Clinical Medicine Research Center,No.2020N090s.
文摘BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.