Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Al2O3/TiCN composites were synthesized by hot pressing.The influences of components and HP temperature on mechanical properties,such as bending strength,breaking tenacity and Vickers hardness were investigated.The res...Al2O3/TiCN composites were synthesized by hot pressing.The influences of components and HP temperature on mechanical properties,such as bending strength,breaking tenacity and Vickers hardness were investigated.The results showed that the mechanical properties of Al2O3/TiCN composite increased with temperature when hot pressing temperature is below 1650 ℃.The mechanical properties reached their maximums when the composites were sintered at 1650 ℃ for 30 min under hot pressing pressure of 35 MPa,the value of bending strength,breaking tenacity and Vickers hardness was 1015 MPa,6.89 MPa·m1/2,and 20.82 MPa,respectively.When hot pressing temperature was above 1650 ℃,density decreased because of decomposition with increased temperature,and mechanical properties dropped because of rapid growth of grains in size at high temperature.Microstructure analysis showed that the addition of Y2O3 led to the formation of YAG phase so as to inhibit the growth of crystals.This helped to improve breaking tenacity of the composites.TiCN particles with diameters of 1 μm dispersed at Al2O3 grain boundaries,inhibited grain growth and enhanced mechanical properties of the composites.SEM study of the propagation of indentation cracks showed that the bridge linking behavior between matrix and strengthening phase might lead to the formation of the coexisted field of crack deflection,branching and bridge linking.The mechanism of this phenomenon was that the addition of Y2O3 improved the dispersion of TiCN particles so as to enhance the tenacity of the composites.The breaking tenacity was changed from 5.94 to 6.89 MPa·m1/2.展开更多
Four composites, MoSi 2+ZrO 2, MoSi 2+ZrO 2(Y 2O 3), MoSi 2+ZrO 2+SiC and MoSi 2+ZrO 2(Y 2O 3)+SiC are fabricated by mechanical alloying. It is clear that cracks produced on the MoSi 2 matrix composites during hardnes...Four composites, MoSi 2+ZrO 2, MoSi 2+ZrO 2(Y 2O 3), MoSi 2+ZrO 2+SiC and MoSi 2+ZrO 2(Y 2O 3)+SiC are fabricated by mechanical alloying. It is clear that cracks produced on the MoSi 2 matrix composites during hardness testing belong to the Palmquist crack system. The value of highest fracture toughness of MoSi 2+ZrO 2+SiC composite is 7.58?MPa·m 1/2 , which is nearly three times that of monolithic MoSi 2. This can be attributed to well distributed ZrO 2 and SiC particles along the boundaries of very fine MoSi 2 grains.展开更多
The membranes of sulfonated poly(etheretherketone) of 48.3% sulfonation degree doped with Y2O3 were prepared, and then treated with parallel high magnetic field of 6 and 12 T at 120 oC for 4 h, respectively. The sma...The membranes of sulfonated poly(etheretherketone) of 48.3% sulfonation degree doped with Y2O3 were prepared, and then treated with parallel high magnetic field of 6 and 12 T at 120 oC for 4 h, respectively. The small-angle X-ray scattering revealed that the struc- ture of the composite membranes would be changed by high magnetic field treatment. The cross-section morphology of the composite membranes by a scanning electron microscope showed that the Y2O3 could be dispersed evenly in the composite membranes which were relatively smooth and compact but formed small conglomeration with increasing Y2O3 content and treating high magnetic field. The water uptake of membranes would be reduced with Y2O3 content increasing, but not be modified by the treatment of high magnetic field. The proton conductivity of membranes would be increased with temperature rising from 20 to 60 oC, and improved under high magnetic field, which could all exceed 10–2 S/cm at 75% relative humidity, but decrease with doping content of Y2O3 from 2 wt.% to 8 wt.%. The methanol permeability of the composite membranes would be decreased with Y2O3 content increasing and slightly reduced after high magnetic field treatment.展开更多
A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morpholo...A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.展开更多
In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were in...In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were investigated.The Ce:GYAG/Ce:YAG composite ceramic consisting of two-phase has a broad emission band ranging from 500 to 750 nm.The total mass attenuation coefficient of Ce:GYAG/Ce:YAG is 0.3864 cm^-1,in between those of Ce:YAG and Ce:GYAG ceramics.In addition,the composite ceramic had a high light yield of 20430 ph/MeV.By controlling the ratio of GYAG and YAG,the composite ceramic can realize a spectrum design and total mass attenuation coefficient control to meet the requirements for wide-X-ray-energy-range detectors.展开更多
A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency ...A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency magnetron sputtering in order to improve the tritium permeation resistance.The microstructure and the phase composition of the Al2O3/Y2O3 composite coating are observed by scanning electron microscopy,transmission electron microscopy and grazing incidence X-ray diffraction.Moreover,Auger electron spectroscopy was used to characterize the depth profiles of Al,Y and O elements.The results clearly indicate that the Al2O3/Y2O3 composite coating is fully dense and the total thickness is approximately 340 nm.The Al2O3/Y2O3 coating consists of an amorphous Al2O3 and the cubic Y2O3,in which Al,Y and O elements are homogeneously distributed in the vertical base direction.Furthermore,the deuterium permeation property of the Al2O3/Y2O3 composite coating was measured by the gas phase permeation method.The results show that the introduction of an interface and the existence of a tiny amount of micro-defects improve the deuterium resistance of the Al2O3/Y2O3 coating,and its deuterium permeation reduction factor is 536-750 at 873-973 K.Therefore,it is concluded that the Al2O3/Y2O3 co mposite coating as deuterium permeation barrier can significa ntly enha nce the deuterium permeation resistance property.展开更多
W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characteriz...W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The XRD showed that the W-2 wt.%Y2O3 composite powder, including tungsten matrix and Y2O3 particles, was refined to nanometer sizes during the MA process. The SEM and TEM micrographs showed that the MA produced composite powder presented a lamellar morphology and contained many dislocations and microcracks. The EDS showed that the Y and O elements were uniformly distributed in the W matrix after mechanically alloying for 15 h. The W-2 wt.%Y2O3 composite material with uniform distribution of yttrium was obtained by sintering of the MA produced composite powder.展开更多
Y2O3-doped TiCN-based cermets were prepared by pressureless sintering with powders TiC, TiN, Ni, etc. as main starting materials. The influence of sintering processes and Y2O3 on properties of TiCN-based cermets were ...Y2O3-doped TiCN-based cermets were prepared by pressureless sintering with powders TiC, TiN, Ni, etc. as main starting materials. The influence of sintering processes and Y2O3 on properties of TiCN-based cermets were investigated. The phase composition of TiCN-based cermets almost had no change with Y2O3 addition. The fullly densified TiCN-based cermets were achieved by P-2 sitering process. The fracture surface showed lots of small dimples caused by hard phase particles pulling-off, and the left hard phase particles were attached to the arborous dendritic matrix. The Vickers hardness, fracture toughness and bending strength of TiCN-based cermets increased firstly and then decreased with the increment of Y2O3 content. When Y2O3 contents were both 0.8 wt.%, compared with the P-1 sintered samples, the Vickers hardness, fracture toughness and bending strength of the P-2 sintered sampies reached 14.84 GPa, 8.66 MPa-m1/2 and 660.4 MPa, which were increased by 7.9%, 6.1% and 45.8%, respectively.展开更多
Dense Y-TZP ceramics and Y-TZP/Al_2O_3 composite ceramics are prepared successfully by microwave sintering using rectangle single mode (TE_(10n)) applicator. The heating characteristcs by microwave of the materials ar...Dense Y-TZP ceramics and Y-TZP/Al_2O_3 composite ceramics are prepared successfully by microwave sintering using rectangle single mode (TE_(10n)) applicator. The heating characteristcs by microwave of the materials are related to the sample compositions. Higher Y-TZP content leads to a higher heating-up rate and a shorter time period needed for heating-up. The input power, short circuit plug position and the opening size of adjustable coupling iris are adjusted timely to maintain the resonance and the optimum coupling condition, and therefore a certain heating-up rate and final stable sintering temperature could be achieved. Relative densities above 98% TD are obtained for Y-TZP and 20 Vol% Al_2O_3-Y-TZP composite ceramics, with their grain sizes of about 0.4 and 1.0 μm, respectively. It is also found that the sample center can be over-sintered when the temperature is too high since a higher temperature at the sample center is usually reached than that at the surface.展开更多
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Project supported by the Education Youth Foundation of Liaoning Province(05L374)Science and Technology Foundation of Shenyang Ligong University(BS04018)
文摘Al2O3/TiCN composites were synthesized by hot pressing.The influences of components and HP temperature on mechanical properties,such as bending strength,breaking tenacity and Vickers hardness were investigated.The results showed that the mechanical properties of Al2O3/TiCN composite increased with temperature when hot pressing temperature is below 1650 ℃.The mechanical properties reached their maximums when the composites were sintered at 1650 ℃ for 30 min under hot pressing pressure of 35 MPa,the value of bending strength,breaking tenacity and Vickers hardness was 1015 MPa,6.89 MPa·m1/2,and 20.82 MPa,respectively.When hot pressing temperature was above 1650 ℃,density decreased because of decomposition with increased temperature,and mechanical properties dropped because of rapid growth of grains in size at high temperature.Microstructure analysis showed that the addition of Y2O3 led to the formation of YAG phase so as to inhibit the growth of crystals.This helped to improve breaking tenacity of the composites.TiCN particles with diameters of 1 μm dispersed at Al2O3 grain boundaries,inhibited grain growth and enhanced mechanical properties of the composites.SEM study of the propagation of indentation cracks showed that the bridge linking behavior between matrix and strengthening phase might lead to the formation of the coexisted field of crack deflection,branching and bridge linking.The mechanism of this phenomenon was that the addition of Y2O3 improved the dispersion of TiCN particles so as to enhance the tenacity of the composites.The breaking tenacity was changed from 5.94 to 6.89 MPa·m1/2.
文摘Four composites, MoSi 2+ZrO 2, MoSi 2+ZrO 2(Y 2O 3), MoSi 2+ZrO 2+SiC and MoSi 2+ZrO 2(Y 2O 3)+SiC are fabricated by mechanical alloying. It is clear that cracks produced on the MoSi 2 matrix composites during hardness testing belong to the Palmquist crack system. The value of highest fracture toughness of MoSi 2+ZrO 2+SiC composite is 7.58?MPa·m 1/2 , which is nearly three times that of monolithic MoSi 2. This can be attributed to well distributed ZrO 2 and SiC particles along the boundaries of very fine MoSi 2 grains.
基金Project supported by the National Natural Science Foundation of China (50975167)Shanghai Leading Academic Discipline Project (S30107)Wenling Science and Technology Bureau ([2009]29-01-31) for continuing support on this research
文摘The membranes of sulfonated poly(etheretherketone) of 48.3% sulfonation degree doped with Y2O3 were prepared, and then treated with parallel high magnetic field of 6 and 12 T at 120 oC for 4 h, respectively. The small-angle X-ray scattering revealed that the struc- ture of the composite membranes would be changed by high magnetic field treatment. The cross-section morphology of the composite membranes by a scanning electron microscope showed that the Y2O3 could be dispersed evenly in the composite membranes which were relatively smooth and compact but formed small conglomeration with increasing Y2O3 content and treating high magnetic field. The water uptake of membranes would be reduced with Y2O3 content increasing, but not be modified by the treatment of high magnetic field. The proton conductivity of membranes would be increased with temperature rising from 20 to 60 oC, and improved under high magnetic field, which could all exceed 10–2 S/cm at 75% relative humidity, but decrease with doping content of Y2O3 from 2 wt.% to 8 wt.%. The methanol permeability of the composite membranes would be decreased with Y2O3 content increasing and slightly reduced after high magnetic field treatment.
基金Project (gf200901002) support by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.
基金financially supported by the National Natural Science Foundation of China(Nos.61378069,61405221,and 11535010)Youth Innovation Promotion Association of the Chinese Academy of Science(CAS)+2 种基金National Key Research and Development Program of China(SQ2017YFGX010025-03)Interdisciplinary Innovation Team of the CASGeneral Financial Grant from the China Postdoctoral Science Foundation(No.2016M601654)
文摘In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were investigated.The Ce:GYAG/Ce:YAG composite ceramic consisting of two-phase has a broad emission band ranging from 500 to 750 nm.The total mass attenuation coefficient of Ce:GYAG/Ce:YAG is 0.3864 cm^-1,in between those of Ce:YAG and Ce:GYAG ceramics.In addition,the composite ceramic had a high light yield of 20430 ph/MeV.By controlling the ratio of GYAG and YAG,the composite ceramic can realize a spectrum design and total mass attenuation coefficient control to meet the requirements for wide-X-ray-energy-range detectors.
基金Project supported by the National Natural Science Foundation of China(51671034)。
文摘A tritium permeation barrier is required in fusion blankets for the reduction of fuel loss and radiological hazard.In this study,an Al2O3/Y2O3 composite coating was prepared on 316 L stainless steel by radiofrequency magnetron sputtering in order to improve the tritium permeation resistance.The microstructure and the phase composition of the Al2O3/Y2O3 composite coating are observed by scanning electron microscopy,transmission electron microscopy and grazing incidence X-ray diffraction.Moreover,Auger electron spectroscopy was used to characterize the depth profiles of Al,Y and O elements.The results clearly indicate that the Al2O3/Y2O3 composite coating is fully dense and the total thickness is approximately 340 nm.The Al2O3/Y2O3 coating consists of an amorphous Al2O3 and the cubic Y2O3,in which Al,Y and O elements are homogeneously distributed in the vertical base direction.Furthermore,the deuterium permeation property of the Al2O3/Y2O3 composite coating was measured by the gas phase permeation method.The results show that the introduction of an interface and the existence of a tiny amount of micro-defects improve the deuterium resistance of the Al2O3/Y2O3 coating,and its deuterium permeation reduction factor is 536-750 at 873-973 K.Therefore,it is concluded that the Al2O3/Y2O3 co mposite coating as deuterium permeation barrier can significa ntly enha nce the deuterium permeation resistance property.
文摘W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The XRD showed that the W-2 wt.%Y2O3 composite powder, including tungsten matrix and Y2O3 particles, was refined to nanometer sizes during the MA process. The SEM and TEM micrographs showed that the MA produced composite powder presented a lamellar morphology and contained many dislocations and microcracks. The EDS showed that the Y and O elements were uniformly distributed in the W matrix after mechanically alloying for 15 h. The W-2 wt.%Y2O3 composite material with uniform distribution of yttrium was obtained by sintering of the MA produced composite powder.
基金supported by the Shaanxi Industrial Science and Technology Research(2014K08-09)the Scientific Research Program funded by Yulin city(2012)
文摘Y2O3-doped TiCN-based cermets were prepared by pressureless sintering with powders TiC, TiN, Ni, etc. as main starting materials. The influence of sintering processes and Y2O3 on properties of TiCN-based cermets were investigated. The phase composition of TiCN-based cermets almost had no change with Y2O3 addition. The fullly densified TiCN-based cermets were achieved by P-2 sitering process. The fracture surface showed lots of small dimples caused by hard phase particles pulling-off, and the left hard phase particles were attached to the arborous dendritic matrix. The Vickers hardness, fracture toughness and bending strength of TiCN-based cermets increased firstly and then decreased with the increment of Y2O3 content. When Y2O3 contents were both 0.8 wt.%, compared with the P-1 sintered samples, the Vickers hardness, fracture toughness and bending strength of the P-2 sintered sampies reached 14.84 GPa, 8.66 MPa-m1/2 and 660.4 MPa, which were increased by 7.9%, 6.1% and 45.8%, respectively.
文摘Dense Y-TZP ceramics and Y-TZP/Al_2O_3 composite ceramics are prepared successfully by microwave sintering using rectangle single mode (TE_(10n)) applicator. The heating characteristcs by microwave of the materials are related to the sample compositions. Higher Y-TZP content leads to a higher heating-up rate and a shorter time period needed for heating-up. The input power, short circuit plug position and the opening size of adjustable coupling iris are adjusted timely to maintain the resonance and the optimum coupling condition, and therefore a certain heating-up rate and final stable sintering temperature could be achieved. Relative densities above 98% TD are obtained for Y-TZP and 20 Vol% Al_2O_3-Y-TZP composite ceramics, with their grain sizes of about 0.4 and 1.0 μm, respectively. It is also found that the sample center can be over-sintered when the temperature is too high since a higher temperature at the sample center is usually reached than that at the surface.