The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numeric...The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.展开更多
This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas in...This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accuracy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dambreak flood through an intricate city layout are examined.展开更多
With some popular tracking methods for free surface, simulations of several typical examples are carried out under various flow field conditions. The results show that the Smoothed Particle Hydrodynamics (SPH) metho...With some popular tracking methods for free surface, simulations of several typical examples are carried out under various flow field conditions. The results show that the Smoothed Particle Hydrodynamics (SPH) method is very suitable in simulating the flow problems with a free surface. A viscous liquid droplet with an initial velocity impacting on a solid surface is simulated based on the SPH method, and the surface tension is considered by searching the free surface particles, the initial impact effect is considered by using the artificial viscosity method, boundary virtual particles and image virtual particles are introduced to deal with the boundary problem, and the boundary defect can be identified quite well. The comparisons of simulated results and experimental photographs show that the SPH method can not only exactly simulate the spreading process and the rebound process of a liquid droplet impacting on a solid surface but also accurately track the free surface particles, simulate the free-surface flow and determine the shape of the free surface due to its particle nature.展开更多
In this paper,a novel unconditionally energy stable Smoothed Particle Hydrodynamics(SPH)method is proposed and implemented for incompressible fluid flows.In this method,we apply operator splitting to break the momentu...In this paper,a novel unconditionally energy stable Smoothed Particle Hydrodynamics(SPH)method is proposed and implemented for incompressible fluid flows.In this method,we apply operator splitting to break the momentum equation into equations involving the non-pressure term and pressure term separately.The idea behind the splitting is to simplify the calculation while still maintaining energy stability,and the resulted algorithm,a type of improved pressure correction scheme,is both efficient and energy stable.We show in detail that energy stability is preserved at each full-time step,ensuring unconditionally numerical stability.Numerical examples are presented and compared to the analytical solutions,suggesting that the proposed method has better accuracy and stability.Moreover,we observe that if we are interested in steady-state solutions only,our method has good performance as it can achieve the steady-state solutions rapidly and accurately.展开更多
In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH) and finite element (FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike ...In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH) and finite element (FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH-FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH-FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike.展开更多
The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenom...The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenomenon with fluid-structure interaction, free surface and moving interface. Numerical simulation using the Smoothed Particle Hydrodynamics (SPH) method coupled with the Finite Element (FE) method was successfully conducted to predict the dynamic characteristics of hydrodynamic damper. The water resistance, the pressure in the interface and the stress of structure were investigated, and the relationship among the peak of water resistance, initial velocity and actual draught was also discussed. The empirical formula was put forward to predict the water resistance. And it is found that the resistance coefficient is commonly in the range of 0.3 ≤ C ≤ 0.5, when the initial velocity is larger than 50 m/s. It can be seen that the SPH method coupled with the FE method has many obvious advantages over other numerical methods for this complicated flow problem with fluid-structure interaction.展开更多
基金Supported by National Natural Science Foundation of China(No.50638030 and 50525825)National Science and Technology Support Program(No.2006BAJ13B02)
文摘The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
基金Project supported by the National Basic Research Development Program of China(973 Program,No.2012CB719705)the National Natural Science Foundation of China(Grant Nos.91024032,70833003)
文摘This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accuracy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dambreak flood through an intricate city layout are examined.
基金Project supported by the National Natural Science Foundation of China(Grant No.51079095)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51021004)
文摘With some popular tracking methods for free surface, simulations of several typical examples are carried out under various flow field conditions. The results show that the Smoothed Particle Hydrodynamics (SPH) method is very suitable in simulating the flow problems with a free surface. A viscous liquid droplet with an initial velocity impacting on a solid surface is simulated based on the SPH method, and the surface tension is considered by searching the free surface particles, the initial impact effect is considered by using the artificial viscosity method, boundary virtual particles and image virtual particles are introduced to deal with the boundary problem, and the boundary defect can be identified quite well. The comparisons of simulated results and experimental photographs show that the SPH method can not only exactly simulate the spreading process and the rebound process of a liquid droplet impacting on a solid surface but also accurately track the free surface particles, simulate the free-surface flow and determine the shape of the free surface due to its particle nature.
基金This work is partially supported by King Abdullah University of Science and Technology(KAUST)through the grants BAS/1/1351-01,URF/1/4074-01,and URF/1/3769-01.
文摘In this paper,a novel unconditionally energy stable Smoothed Particle Hydrodynamics(SPH)method is proposed and implemented for incompressible fluid flows.In this method,we apply operator splitting to break the momentum equation into equations involving the non-pressure term and pressure term separately.The idea behind the splitting is to simplify the calculation while still maintaining energy stability,and the resulted algorithm,a type of improved pressure correction scheme,is both efficient and energy stable.We show in detail that energy stability is preserved at each full-time step,ensuring unconditionally numerical stability.Numerical examples are presented and compared to the analytical solutions,suggesting that the proposed method has better accuracy and stability.Moreover,we observe that if we are interested in steady-state solutions only,our method has good performance as it can achieve the steady-state solutions rapidly and accurately.
基金supported by the National Natural Science Foundation of China (No. 11102167)the Basic Research Foundation of Northwestern Polytechnical University of China (No. JCY20130102)
文摘In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH) and finite element (FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH-FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH-FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike.
文摘The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenomenon with fluid-structure interaction, free surface and moving interface. Numerical simulation using the Smoothed Particle Hydrodynamics (SPH) method coupled with the Finite Element (FE) method was successfully conducted to predict the dynamic characteristics of hydrodynamic damper. The water resistance, the pressure in the interface and the stress of structure were investigated, and the relationship among the peak of water resistance, initial velocity and actual draught was also discussed. The empirical formula was put forward to predict the water resistance. And it is found that the resistance coefficient is commonly in the range of 0.3 ≤ C ≤ 0.5, when the initial velocity is larger than 50 m/s. It can be seen that the SPH method coupled with the FE method has many obvious advantages over other numerical methods for this complicated flow problem with fluid-structure interaction.