A numerical model was established for simulating wave impact on a horizontal deck by an improved incompressible smoothed particle hydrodynamics (ISPH). As a grid-less particle method, the ISPH method has been widely u...A numerical model was established for simulating wave impact on a horizontal deck by an improved incompressible smoothed particle hydrodynamics (ISPH). As a grid-less particle method, the ISPH method has been widely used in the free-surface hydrodynamic flows with good accuracy. The improvement includes the employment of a corrective function for enhancement of angular momentum conservation in a particle-based calculation and a new estimation method to predict the pressure on the horizontal deck. The simulation results show a good agreement with the experiment. The present numerical model can be used to study wave impact load on the horizontal deck.展开更多
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle s...Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle standing in the way of its wide application. Adopting the Taylor series expansion method and solving the integral equation matrix, the second order kernel approximation method can be obtained, namely K2_SPH, which is discussed in this paper. This method is similar to the Finite Particle Method. With the improvement of kernel approximation, some numerical techniques should be adopted for different types of boundaries, such as a free surface boundary and solid boundary, which are two key numerical techniques of K2_SPH for water wave simulation. This paper gives some numerical results of two dimensional water wave simulations involving standing wave and sloshing tank problems by using K2_SPH. From the comparison of simulation results, the K2_SPH method is more reliable than standard SPH.展开更多
A droplet undergoes spreading,rebounding or splashing when it impacts solid boundary,which is a typical phenomenon of free surface flow that exists widely in modern industry.Smoothed particle hydrodynamics(SPH)method ...A droplet undergoes spreading,rebounding or splashing when it impacts solid boundary,which is a typical phenomenon of free surface flow that exists widely in modern industry.Smoothed particle hydrodynamics(SPH)method is applied to numerically study the dynamical behaviors of the droplet impacting solid boundary,and both the spreading and rebounding phenomena of the droplet are reproduced in the simulation.The droplet deformation,flow fields and pressure fields inside the droplet at different moments are analyzed.Two important factors,the initial velocity and diameter,are discussed in determining the maximum spreading factor,revealing that the maximum spreading factor increases with the increase of the impact velocity and droplet diameter respectively.展开更多
The ocean environment is protected from oil pollution usually by using floating booms,which involves water-oil two-phase flow and strong fluid-structure interaction.In this paper,a modified multi-phase smoothed partic...The ocean environment is protected from oil pollution usually by using floating booms,which involves water-oil two-phase flow and strong fluid-structure interaction.In this paper,a modified multi-phase smoothed particle hydrodynamics(SPH) method is proposed to model oil spill containment by using a moving boom.Four major influencing factors including oil type,moving velocity and skirt angle of the boom,and water wave are investigated.The SPH simulation results demonstrate different typical boom failure modes found in laboratory experiments.It is shown that the ability of a boom in containing oil is not only affected by its own characteristics,but also closely related to external environmental factors.It is found that boom failure is more likely to happen for heavy oil,high boom velocity,negative skirt angle,and/or in the presence of water waves.展开更多
Smoothed particle hydrodynamics(SPH)is a mesh-free method which is powerful for large deformation computation of soils.However,the algorithm for the simulation of frictional contact which is common in geotechnical eng...Smoothed particle hydrodynamics(SPH)is a mesh-free method which is powerful for large deformation computation of soils.However,the algorithm for the simulation of frictional contact which is common in geotechnical engineering is still quite immature due to the boundary deficiency.In this study,the cause of boundary deficiency in the SPH simulation for frictional contact is analysed.Then,based on mathematical derivation,the method to correct boundary deficiency related to frictional contact is discussed theoretically,where the frictional contact algorithm is established by dividing the computational domain into several subdomains according to the existing contact boundaries and by using contact forces as bridges of these subdomains to fulfil problem solving,and the value of correction coefficient is obtained by comparing the SPH outcome of the contact particles with that calculated through Newton’s second law of motion.At the same time,from the perspective of numerical computation,an optimized value for the correction coefficient is proposed,and a thorough investigation is performed on the cubic spline kernel function and quintic spline kernel function,whose correction coefficients are found to be 2.0 and[2.0,2.16],respectively.Finally,numerical tests are carried out to verify the proposed method.The outcome of the study is helpful to providing theoretical support for the research of frictional contact simulation within the framework of SPH.展开更多
The present paper proposes a new scheme for identifying free surface particles in an improved SPH (Smoothed Particle Hydrodynamics). With the development of the SPH, free surface identification becomes a key challenge...The present paper proposes a new scheme for identifying free surface particles in an improved SPH (Smoothed Particle Hydrodynamics). With the development of the SPH, free surface identification becomes a key challenge in free surface flow simulations, especially for violent breaking water waves. According to numerical tests, existing free surface identified schemes are not reliable for weakly compressible SPH when violent waves are modeled. The new free surface identification scheme suggested here considers changes in density ratio and three auxiliary functions. Although this new scheme originates from a scheme for another meshfree method (MLPG_R method), it includes several improvements, especially developed for the improved SPH. The limited numerical tests have indicated that the scheme does not significantly increase CPU time required, but it considerably improves the identification of free surface particles.展开更多
Implicit smoothed particle hydrodynamics method has been proposed to overcome the problem that only very small time steps can be used for high viscosity fluids(such as power law fluids)in order to obtain a stable simu...Implicit smoothed particle hydrodynamics method has been proposed to overcome the problem that only very small time steps can be used for high viscosity fluids(such as power law fluids)in order to obtain a stable simulation.However,the pressure field is difficult to simulate correctly with this method because the numerical high-frequency noise on the pressure field cannot be removed.In this study,several improvements,which are the diffusive term in the continuity equation,the artificial viscosity and a simplified physical viscosity term in the momentum equation,are introduced,and a new boundary treatment is also proposed.The linear equations derived from the momentum equation are large-scale,sparse and positive definite but unsymmetrical,therefore,Conjugate Gradient Squared(CGS)is used to solve them.For the purpose of verifying the validity of the proposed method,Poiseuille flows with Newtonian and power law fluids are solved and compared with exact solution and traditional SPH.Drops of different fluid properties impacting a rigid wall are also simulated and compared with VOF solution.All the numerical results obtained by the proposed method agree well with available data.The proposed method shows the higher efficiency than traditional SPH and the less numerical noise on the pressure field and better stability than implicit SPH.展开更多
基金the National High Technology Research and Development Program of China (863 Program,Grant No.2007AA11Z130)
文摘A numerical model was established for simulating wave impact on a horizontal deck by an improved incompressible smoothed particle hydrodynamics (ISPH). As a grid-less particle method, the ISPH method has been widely used in the free-surface hydrodynamic flows with good accuracy. The improvement includes the employment of a corrective function for enhancement of angular momentum conservation in a particle-based calculation and a new estimation method to predict the pressure on the horizontal deck. The simulation results show a good agreement with the experiment. The present numerical model can be used to study wave impact load on the horizontal deck.
基金Supported by the National Natural Science Fundation of China (51009034)Foundational Research Funds of Harbin Engineering University (HEUFT05023, HEUFP05001)+1 种基金Foundational Research Funds for the central Universities (HEUCF100102)The 111 program (B07019)
文摘Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle standing in the way of its wide application. Adopting the Taylor series expansion method and solving the integral equation matrix, the second order kernel approximation method can be obtained, namely K2_SPH, which is discussed in this paper. This method is similar to the Finite Particle Method. With the improvement of kernel approximation, some numerical techniques should be adopted for different types of boundaries, such as a free surface boundary and solid boundary, which are two key numerical techniques of K2_SPH for water wave simulation. This paper gives some numerical results of two dimensional water wave simulations involving standing wave and sloshing tank problems by using K2_SPH. From the comparison of simulation results, the K2_SPH method is more reliable than standard SPH.
基金Supported by the National Natural Science Foundation of China(No.51079095)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51021004)
文摘A droplet undergoes spreading,rebounding or splashing when it impacts solid boundary,which is a typical phenomenon of free surface flow that exists widely in modern industry.Smoothed particle hydrodynamics(SPH)method is applied to numerically study the dynamical behaviors of the droplet impacting solid boundary,and both the spreading and rebounding phenomena of the droplet are reproduced in the simulation.The droplet deformation,flow fields and pressure fields inside the droplet at different moments are analyzed.Two important factors,the initial velocity and diameter,are discussed in determining the maximum spreading factor,revealing that the maximum spreading factor increases with the increase of the impact velocity and droplet diameter respectively.
基金National Science Foundation for Young Scientists of China(12102427,12102202)Foundation of National Key Laboratory of Transient Physics(6142604210401)。
基金supported by the National Natural Science Foundation of China (Grant No. 11172306)the Program of "One Hundred Talented People" of the Chinese Academy of Sciences
文摘The ocean environment is protected from oil pollution usually by using floating booms,which involves water-oil two-phase flow and strong fluid-structure interaction.In this paper,a modified multi-phase smoothed particle hydrodynamics(SPH) method is proposed to model oil spill containment by using a moving boom.Four major influencing factors including oil type,moving velocity and skirt angle of the boom,and water wave are investigated.The SPH simulation results demonstrate different typical boom failure modes found in laboratory experiments.It is shown that the ability of a boom in containing oil is not only affected by its own characteristics,but also closely related to external environmental factors.It is found that boom failure is more likely to happen for heavy oil,high boom velocity,negative skirt angle,and/or in the presence of water waves.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20131372)the National Natural Science Founda-tion of China(Grant No.51139001)+1 种基金Special Fund of State Key Laboratory of China(Grant No.20095860120)the Fundamental Research Funds for the Central Universities of China(Grant No.B1020083)
文摘Smoothed particle hydrodynamics(SPH)is a mesh-free method which is powerful for large deformation computation of soils.However,the algorithm for the simulation of frictional contact which is common in geotechnical engineering is still quite immature due to the boundary deficiency.In this study,the cause of boundary deficiency in the SPH simulation for frictional contact is analysed.Then,based on mathematical derivation,the method to correct boundary deficiency related to frictional contact is discussed theoretically,where the frictional contact algorithm is established by dividing the computational domain into several subdomains according to the existing contact boundaries and by using contact forces as bridges of these subdomains to fulfil problem solving,and the value of correction coefficient is obtained by comparing the SPH outcome of the contact particles with that calculated through Newton’s second law of motion.At the same time,from the perspective of numerical computation,an optimized value for the correction coefficient is proposed,and a thorough investigation is performed on the cubic spline kernel function and quintic spline kernel function,whose correction coefficients are found to be 2.0 and[2.0,2.16],respectively.Finally,numerical tests are carried out to verify the proposed method.The outcome of the study is helpful to providing theoretical support for the research of frictional contact simulation within the framework of SPH.
基金supported by the National Natural Science Foundation of China (Grant No. 51009034)Foundational Research Funds for the Central Universities (Grant No. HEUCF100102)111 Program (Grant No.B07019)
文摘The present paper proposes a new scheme for identifying free surface particles in an improved SPH (Smoothed Particle Hydrodynamics). With the development of the SPH, free surface identification becomes a key challenge in free surface flow simulations, especially for violent breaking water waves. According to numerical tests, existing free surface identified schemes are not reliable for weakly compressible SPH when violent waves are modeled. The new free surface identification scheme suggested here considers changes in density ratio and three auxiliary functions. Although this new scheme originates from a scheme for another meshfree method (MLPG_R method), it includes several improvements, especially developed for the improved SPH. The limited numerical tests have indicated that the scheme does not significantly increase CPU time required, but it considerably improves the identification of free surface particles.
基金supported by the National Natural Science Foundation of China(Grant No.51276192)
文摘Implicit smoothed particle hydrodynamics method has been proposed to overcome the problem that only very small time steps can be used for high viscosity fluids(such as power law fluids)in order to obtain a stable simulation.However,the pressure field is difficult to simulate correctly with this method because the numerical high-frequency noise on the pressure field cannot be removed.In this study,several improvements,which are the diffusive term in the continuity equation,the artificial viscosity and a simplified physical viscosity term in the momentum equation,are introduced,and a new boundary treatment is also proposed.The linear equations derived from the momentum equation are large-scale,sparse and positive definite but unsymmetrical,therefore,Conjugate Gradient Squared(CGS)is used to solve them.For the purpose of verifying the validity of the proposed method,Poiseuille flows with Newtonian and power law fluids are solved and compared with exact solution and traditional SPH.Drops of different fluid properties impacting a rigid wall are also simulated and compared with VOF solution.All the numerical results obtained by the proposed method agree well with available data.The proposed method shows the higher efficiency than traditional SPH and the less numerical noise on the pressure field and better stability than implicit SPH.