This paper reports that high quality CuGeO3 single crystals were successfully grown by floating-zone technique and the magnetic property was studied. The temperature dependence of magnetic susceptibility below the spi...This paper reports that high quality CuGeO3 single crystals were successfully grown by floating-zone technique and the magnetic property was studied. The temperature dependence of magnetic susceptibility below the spin-Peierls (SP) transition temperature (Tsp) under magnetic fields applying along both the a- and c-axis direction can be fitted well by a model of noninteracting dimmers. The spin gap derived from the fitting is consistent with other reports. There is a very weak anisotropy in the fitting parameters for different directions, which should be expected from a SP system. A small upturn in susceptibility at low temperature due to paramagnetic impurities and/or defects can be observed. A suppression of the upturn by magnetic field is first discovered in this system and the possible origins for this suppression are discussed.展开更多
Orthorhombic copper polysilicate, CuSiO3, is isotypic to the spin-Peierls compound CuGeO3 and represents a further example of a quasi-one-dimensional spin = 1/2 antiferromagnetic Heisenberg chain system. This is a rep...Orthorhombic copper polysilicate, CuSiO3, is isotypic to the spin-Peierls compound CuGeO3 and represents a further example of a quasi-one-dimensional spin = 1/2 antiferromagnetic Heisenberg chain system. This is a representation of the first Raman and IR/FIR spectra for CuSiO3, measured at room temperature on polycrystalline samples. A comparison of the optical phonons, predicted by a factor group analysis, with those observed for the CuGeO3 prototype, is presented. A mode assignment for the silicate is given. Surface effects due to a very small crystallite size may cause additional broad bands observed in the Raman spectrum of CuSiO3. From the analysis of the Davydov doublet an intralayer-to-interlayer bond strength of about 40 is derived for the silicate, which is about 20% lower than for the isotypic germanate, allowing for different magnetic responses at low temperature.展开更多
Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics.For instance,in a half-filled spin-1/2 anti-ferromagnetic chain,the lattice dimerization induced...Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics.For instance,in a half-filled spin-1/2 anti-ferromagnetic chain,the lattice dimerization induced by electron-nucleus interaction can be intensified by onsite Coulomb repulsion,resulting in a spin-Peierls state.Through first-principles calculations and crystal structure prediction methods,we have identified that under mild pressures,potassium and ammonia can form stable compounds:R3m K(NH_(3))_(2),Pm3 m K(NH_(3))_(2),and Cm K_(2)(NH_(3))_(3).Our predictions suggest that the R3 m K(NH_(3))_(2)exhibits electride characteristics,marked by the formation of interstitial anionic electrons(IAEs)in the interlayer space.These IAEs are arranged in quasi-two-dimensional triangular arrays.With increasing pressure,the electronic van-Hove singularity shifts toward the Fermi level,resulting in an augmented density of states and the onset of both Peierls and magnetic instabilities.Analyzing these instabilities,we determine that the ground state of the R3 m K(NH_(3))_(2)is the dimerized P2_(1)/m phase with zigzag-type anti-ferromagnetic IAEs.This state can be described by the triangular-lattice antiferromagnetic Heisenberg model with modulated magnetic interactions.Furthermore,we unveil the coexistence and positive interplay between magnetic and Peierls instability,constituting a scenario of spin-Peierls instability unprecedented in realistic 2D materials,particularly involving IAEs.This work provides valuable insights into the coupling of IAEs with the adjacent lattice and their spin correlations in quantum materials.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10634030)the Zhejiang Province Natural Science Foundation of China (Grant No Y605106)
文摘This paper reports that high quality CuGeO3 single crystals were successfully grown by floating-zone technique and the magnetic property was studied. The temperature dependence of magnetic susceptibility below the spin-Peierls (SP) transition temperature (Tsp) under magnetic fields applying along both the a- and c-axis direction can be fitted well by a model of noninteracting dimmers. The spin gap derived from the fitting is consistent with other reports. There is a very weak anisotropy in the fitting parameters for different directions, which should be expected from a SP system. A small upturn in susceptibility at low temperature due to paramagnetic impurities and/or defects can be observed. A suppression of the upturn by magnetic field is first discovered in this system and the possible origins for this suppression are discussed.
文摘Orthorhombic copper polysilicate, CuSiO3, is isotypic to the spin-Peierls compound CuGeO3 and represents a further example of a quasi-one-dimensional spin = 1/2 antiferromagnetic Heisenberg chain system. This is a representation of the first Raman and IR/FIR spectra for CuSiO3, measured at room temperature on polycrystalline samples. A comparison of the optical phonons, predicted by a factor group analysis, with those observed for the CuGeO3 prototype, is presented. A mode assignment for the silicate is given. Surface effects due to a very small crystallite size may cause additional broad bands observed in the Raman spectrum of CuSiO3. From the analysis of the Davydov doublet an intralayer-to-interlayer bond strength of about 40 is derived for the silicate, which is about 20% lower than for the isotypic germanate, allowing for different magnetic responses at low temperature.
基金financial support from the National Key R&D Program of China(2022YFA1403201)the National Natural Science Foundation of China(12125404,11974162,and 11834006)the Fundamental Research Funds for the Central Universities。
文摘Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics.For instance,in a half-filled spin-1/2 anti-ferromagnetic chain,the lattice dimerization induced by electron-nucleus interaction can be intensified by onsite Coulomb repulsion,resulting in a spin-Peierls state.Through first-principles calculations and crystal structure prediction methods,we have identified that under mild pressures,potassium and ammonia can form stable compounds:R3m K(NH_(3))_(2),Pm3 m K(NH_(3))_(2),and Cm K_(2)(NH_(3))_(3).Our predictions suggest that the R3 m K(NH_(3))_(2)exhibits electride characteristics,marked by the formation of interstitial anionic electrons(IAEs)in the interlayer space.These IAEs are arranged in quasi-two-dimensional triangular arrays.With increasing pressure,the electronic van-Hove singularity shifts toward the Fermi level,resulting in an augmented density of states and the onset of both Peierls and magnetic instabilities.Analyzing these instabilities,we determine that the ground state of the R3 m K(NH_(3))_(2)is the dimerized P2_(1)/m phase with zigzag-type anti-ferromagnetic IAEs.This state can be described by the triangular-lattice antiferromagnetic Heisenberg model with modulated magnetic interactions.Furthermore,we unveil the coexistence and positive interplay between magnetic and Peierls instability,constituting a scenario of spin-Peierls instability unprecedented in realistic 2D materials,particularly involving IAEs.This work provides valuable insights into the coupling of IAEs with the adjacent lattice and their spin correlations in quantum materials.