期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8n的煤矿带式输送异物检测研究
1
作者 李宗霖 王广祥 +1 位作者 张立亚 李明亮 《矿业安全与环保》 CAS 北大核心 2024年第4期41-48,共8页
在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDa... 在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDarkNet53主干网络进行轻量化改进,以减少模型的参数和计算量;整合全局平均池化和全局最大池化思想优化SPPF模块,关注煤矿恶劣环境影响下图像的底层信息;设计了headC2f_CA模块,融入通道注意力机制,以便能够更有效地捕捉不同尺度和位置的异物特征,强化特征信息表达;引入DIoU损失函数,精确反映锚框与预测框之间的相似度,提升模型检测精度。实验结果表明,改进后的模型平均精度均值达88.3%,相比于基线模型YOLOv8n,提升了0.8%,参数量减少了18.51%,计算量减小了20.73%,模型大小缩减了15.87%。该模型有效缓解了边缘设备的硬件限制,同时保障了煤矿安全监测的准确性。 展开更多
关键词 煤矿 带式输送机 输送带异物 部署轻量化 GhostNetV2 sppf优化 headC2f_CA注意力模块 DIoU损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部