Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan...Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
Sandwich structures are widespread in engineering applications because of their advantageous mechanical properties.Recently,their acoustic performance has also been improved to enable attenuation of low-frequency vibr...Sandwich structures are widespread in engineering applications because of their advantageous mechanical properties.Recently,their acoustic performance has also been improved to enable attenuation of low-frequency vibrations induced by noisy environments.Here,we propose a new design of sandwich plates(SPs)featuring a metamaterial core with an actively tunable low-frequency bandgap.The core contains magnetorheological elastomer(MRE)resonators which are arranged periodically and enable controlling wave attenuation by an external magnetic field.We analytically estimate the sound transmission loss(STL)of the plate using the space harmonic expansion method.The low frequency sound insulation performance is also analyzed by the equivalent dynamic density method,and the accuracy of the obtained results is verified by finite-element simulations.Our results demonstrate that the STL of the proposed plate is enhanced compared with a typical SP analog,and the induced bandgap can be effectively tuned to desired frequencies.This study further advances the field of actively controlled acoustic metamaterials,and paves the way to their practical applications.展开更多
Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner m...Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
The differential equations of the axisymmetric large amplitude free vibration for circular sandwich plates under static load are derived, and a set of nonlinearly coupled algebraic and differential eigenvalue equation...The differential equations of the axisymmetric large amplitude free vibration for circular sandwich plates under static load are derived, and a set of nonlinearly coupled algebraic and differential eigenvalue equations of the problem are formulated following an assumed time mode approach suggested. The analytic solutions are presented and a relation for amplitude frequency-load of the plates with edge clamped is derived by modified iteration method. The effects of static load on vibrations of plates are investigated.展开更多
The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory, and then acc...The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory, and then accordingly exact solution of static load and its numerical results were given. Based on time mode hypothesis and the variational method, the control equation of the space mode was derived, and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method. Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated. When circumjacent load makes the lowest natural frequency zero, critical load is obtained.展开更多
On the basis of the first-order shear deformation plate theory andthe zig-zag deformation as- sumption, an incremental finite elementformulation for nonlinear buckling analysis of the composite sandwichplate is deduce...On the basis of the first-order shear deformation plate theory andthe zig-zag deformation as- sumption, an incremental finite elementformulation for nonlinear buckling analysis of the composite sandwichplate is deduced and the temperature-dependent thermal and mechanicalproperties of composite is consid- ered. A finite element method forthermal or thermo-mechanical coupling nonlinear buckling analysis ofthe composite sandwich plate with an interfacial crack damage betweenface and core is also developed.展开更多
A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural fr...A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dyn...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12172236 and 12202289)。
文摘Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金Project supported by the National Natural Science Foundation of China(Nos.12472007 and 12072084)the Fundamental Research Funds for the Central Universities of China。
文摘Sandwich structures are widespread in engineering applications because of their advantageous mechanical properties.Recently,their acoustic performance has also been improved to enable attenuation of low-frequency vibrations induced by noisy environments.Here,we propose a new design of sandwich plates(SPs)featuring a metamaterial core with an actively tunable low-frequency bandgap.The core contains magnetorheological elastomer(MRE)resonators which are arranged periodically and enable controlling wave attenuation by an external magnetic field.We analytically estimate the sound transmission loss(STL)of the plate using the space harmonic expansion method.The low frequency sound insulation performance is also analyzed by the equivalent dynamic density method,and the accuracy of the obtained results is verified by finite-element simulations.Our results demonstrate that the STL of the proposed plate is enhanced compared with a typical SP analog,and the induced bandgap can be effectively tuned to desired frequencies.This study further advances the field of actively controlled acoustic metamaterials,and paves the way to their practical applications.
文摘Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
基金Supported by the National Natural Science Foundation of China(Grant No.51379093)the National Natural Science Foundation of China(Grant No.51109101/E091002)the Open Research Fund Program of Jiangsu Key Laboratory of Advanced Design and Manufacturing Technology(Grant No.CJ1305)
文摘The differential equations of the axisymmetric large amplitude free vibration for circular sandwich plates under static load are derived, and a set of nonlinearly coupled algebraic and differential eigenvalue equations of the problem are formulated following an assumed time mode approach suggested. The analytic solutions are presented and a relation for amplitude frequency-load of the plates with edge clamped is derived by modified iteration method. The effects of static load on vibrations of plates are investigated.
文摘The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory, and then accordingly exact solution of static load and its numerical results were given. Based on time mode hypothesis and the variational method, the control equation of the space mode was derived, and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method. Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated. When circumjacent load makes the lowest natural frequency zero, critical load is obtained.
基金the National Natural Science Foundation of China(No.59975013)
文摘On the basis of the first-order shear deformation plate theory andthe zig-zag deformation as- sumption, an incremental finite elementformulation for nonlinear buckling analysis of the composite sandwichplate is deduced and the temperature-dependent thermal and mechanicalproperties of composite is consid- ered. A finite element method forthermal or thermo-mechanical coupling nonlinear buckling analysis ofthe composite sandwich plate with an interfacial crack damage betweenface and core is also developed.
文摘A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.