随着互联网的飞速发展,集群结构的下一代核心路由器已经成为研究的重点.在可扩展路由器中(clus- ter router),并行路由算法是关键问题之一.对于广泛部署的OSPF协议,最短路径树(SPT)的并行计算是其并行化的核心难点.本文提出了一种计算...随着互联网的飞速发展,集群结构的下一代核心路由器已经成为研究的重点.在可扩展路由器中(clus- ter router),并行路由算法是关键问题之一.对于广泛部署的OSPF协议,最短路径树(SPT)的并行计算是其并行化的核心难点.本文提出了一种计算最短路径树的算法-分区Dijkstra算法(D-D),分析了算法性能,并通过模拟实验验证了算法的性能.展开更多
Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud fede...Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud federation. Data transmissions required for inter-cloud federation in the complex inter-cloud networking system are often point-to-multi points, which calls for a more effective and efficient multicast routing algorithm in complex networking systems. In this paper, we investigate the multicast routing problem in the inter-cloud context with K constraints where K ≥ 2. Unlike most of existing algorithms that are too complex to be applied in practical scenarios, a novel and fast algorithm for establishing multicast routing tree for interclouds is proposed. The proposed algorithm leverages an entropybased process to aggregate all weights into a comprehensive metric, and then uses it to search a multicast tree(MT) on the basis of the shortest path tree(SPT). We conduct complexity analysis and extensive simulations for the proposed algorithm from the approximation perspective. Both analytical and experimental results demonstrate that the algorithm is more efficient than a representative multi-constrained multicast routing algorithm in terms of both speed and accuracy, and thus we believe that the proposed algorithm is applicable to the inter-cloud environment.展开更多
文摘随着互联网的飞速发展,集群结构的下一代核心路由器已经成为研究的重点.在可扩展路由器中(clus- ter router),并行路由算法是关键问题之一.对于广泛部署的OSPF协议,最短路径树(SPT)的并行计算是其并行化的核心难点.本文提出了一种计算最短路径树的算法-分区Dijkstra算法(D-D),分析了算法性能,并通过模拟实验验证了算法的性能.
基金supported by the National Natural Science Foundation of China(61309031)
文摘Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud federation. Data transmissions required for inter-cloud federation in the complex inter-cloud networking system are often point-to-multi points, which calls for a more effective and efficient multicast routing algorithm in complex networking systems. In this paper, we investigate the multicast routing problem in the inter-cloud context with K constraints where K ≥ 2. Unlike most of existing algorithms that are too complex to be applied in practical scenarios, a novel and fast algorithm for establishing multicast routing tree for interclouds is proposed. The proposed algorithm leverages an entropybased process to aggregate all weights into a comprehensive metric, and then uses it to search a multicast tree(MT) on the basis of the shortest path tree(SPT). We conduct complexity analysis and extensive simulations for the proposed algorithm from the approximation perspective. Both analytical and experimental results demonstrate that the algorithm is more efficient than a representative multi-constrained multicast routing algorithm in terms of both speed and accuracy, and thus we believe that the proposed algorithm is applicable to the inter-cloud environment.