The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const...The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.展开更多
Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a...Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.展开更多
This paper covers the hicles. Different from the traditional trajectory optimization design problem "once downward" movement principle of a class of demonstration flight test ve of negative attack angle, the "twice...This paper covers the hicles. Different from the traditional trajectory optimization design problem "once downward" movement principle of a class of demonstration flight test ve of negative attack angle, the "twice down ward" lower trajectory is proposed based on a SOP algorithm to meet the requirement for validating thermal protec- tion materials, Furthermore, an important advantage of this presented method, compared to the traditional method, is that both trajectory constraints and attitude control constraints are considered. An engineering example is also given to show the advantage and effectiveness of this method,展开更多
A robust SQP method, which is analogous to Facchinei’s algorithm, is introduced. The algorithm is globally convergent. It uses automatic rules for choosing penalty parameter, and can efficiently cope with the possibl...A robust SQP method, which is analogous to Facchinei’s algorithm, is introduced. The algorithm is globally convergent. It uses automatic rules for choosing penalty parameter, and can efficiently cope with the possible inconsistency of the quadratic search subproblem. In addition, the algorithm employs a differentiable approximate exact penalty function as a merit function. Unlike the merit function in Facchinei’s algorithm, which is quite complicated and is not easy to be implemented in practice, this new merit function is very simple. As a result, we can use the Facchinei’s idea to construct an algorithm which is easy to be implemented in practice.展开更多
This paper proposes an inexact SQP method in association with line search filter technique for solving nonlinear equality constrained optimization. For large-scale applications, it is expensive to get an exact search ...This paper proposes an inexact SQP method in association with line search filter technique for solving nonlinear equality constrained optimization. For large-scale applications, it is expensive to get an exact search direction, and hence the authors use an inexact method that finds an approximate solution satisfying some appropriate conditions. The global convergence of the proposed algorithm is established by using line search filter technique. The second-order correction step is used to overcome the Maratos effect, while the line search filter inexact SQP method has q-superlinear local convergence rate. Finally, the results of numerical experiments indicate that the proposed method is efficient for the given test problems.展开更多
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of China
文摘The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
基金supported by the National Natural Science Foundation of China(No.10861005)the Natural Science Foundation of Guangxi Province (No.0728206)the Innovation Project of Guangxi Graduate Education(No. 2009105950701M29).
文摘Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.
文摘This paper covers the hicles. Different from the traditional trajectory optimization design problem "once downward" movement principle of a class of demonstration flight test ve of negative attack angle, the "twice down ward" lower trajectory is proposed based on a SOP algorithm to meet the requirement for validating thermal protec- tion materials, Furthermore, an important advantage of this presented method, compared to the traditional method, is that both trajectory constraints and attitude control constraints are considered. An engineering example is also given to show the advantage and effectiveness of this method,
基金This research is supportedin part by the National Natural Science Foundation ofChina(Grant No. 39830070).
文摘A robust SQP method, which is analogous to Facchinei’s algorithm, is introduced. The algorithm is globally convergent. It uses automatic rules for choosing penalty parameter, and can efficiently cope with the possible inconsistency of the quadratic search subproblem. In addition, the algorithm employs a differentiable approximate exact penalty function as a merit function. Unlike the merit function in Facchinei’s algorithm, which is quite complicated and is not easy to be implemented in practice, this new merit function is very simple. As a result, we can use the Facchinei’s idea to construct an algorithm which is easy to be implemented in practice.
基金supported by the National Science Foundation Grant under Grant No.10871130the Shanghai Leading Academic Discipline Project under Grant No.T0401
文摘This paper proposes an inexact SQP method in association with line search filter technique for solving nonlinear equality constrained optimization. For large-scale applications, it is expensive to get an exact search direction, and hence the authors use an inexact method that finds an approximate solution satisfying some appropriate conditions. The global convergence of the proposed algorithm is established by using line search filter technique. The second-order correction step is used to overcome the Maratos effect, while the line search filter inexact SQP method has q-superlinear local convergence rate. Finally, the results of numerical experiments indicate that the proposed method is efficient for the given test problems.