期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Molecular Dynamics Simulation on Pressure and Thickness Dependent Density of Squalane Film 被引量:1
1
作者 潘伶 高诚辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期955-960,共6页
Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three differe... Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h_0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness(9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants. 展开更多
关键词 thin film lubrication density squalane molecular dynamics simulation
下载PDF
Effect of Pressure on Boundary Slip of Thin Film Lubrication Using Atomistic Simulation 被引量:1
2
作者 潘伶 ZHANG Hao +1 位作者 LU Shiping CHEN Youhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期47-52,共6页
Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication(TFL). Molecular dynamics(MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalan... Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication(TFL). Molecular dynamics(MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalane confined in nanogap at 293 K with two different film thicknesses and a wide range of pressures. The molecular distribution, density and velocity profiles of squalane were analyzed. The results show that the lubricant atoms tend to form layers parallel to the wall, but the lubricant molecules orient randomly throughout the film in the directions both parallel and perpendicular to the wall. Most squalane molecules appear twisted and folded, and extend to several atomic layers so that there are no slips between lubricant layers. The distances between the lubricant layers are irregular rather than broadening far away from the walls. The boundary slip at the interface of bcc Fe(001) and squalane only occurs at high pressure because of the strong nonbond interactions between lubricant atoms and wall atoms. The tendency of boundary slip is more obvious for films with thinner film thickness. According to the simulations, the relationship between the slip length and the pressure is given. 展开更多
关键词 BOUNDARY SLIP THIN film LUBRICATION LUBRICATION mechanism MOLECULAR dynamics simulation squalane
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部