期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
OBJECT-BASED SUPER RESOLUTION FOR INTELLIGENT VISUAL SURVEILLANCE VIDEO 被引量:1
1
作者 Wang Suyu Shen Lansun 《Journal of Electronics(China)》 2008年第1期140-144,共5页
Construction of high resolution images from low resolution sequences is often im- portant in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first ... Construction of high resolution images from low resolution sequences is often im- portant in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first proposed. The images to be registered are divided into overlapped blocks of different size according to its motions. The Least Square (LS) image reg- istration algorithm is extended to match the blocks. Then an object based Super Resolution (SR) scheme is designed, the Maximum A Priori (MAP) super resolution algorithm is extended to enhance the resolution of the interest objects. Experimental results show that the proposed multi-scale registration method provides more accurate registration between frames. Further more, the object based super resolution scheme shows an enhanced performance compared with the traditional MAP method. 展开更多
关键词 Super Resolution sr reconstruction Visual surveillance Maximum A Priori (MAP) Affine model Image registration
下载PDF
Video super-resolution reconstruction based on deep convolutional neural network and spatio-temporal similarity
2
作者 Li Linghui Du Junping +2 位作者 Liang Meiyu Ren Nan Fan Dan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期68-81,共14页
Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of ... Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms. 展开更多
关键词 video sr reconstruction deep convolutional neural network spatio-temporal siruilarity Zernike moment feature
原文传递
Edge preserving super-resolution infrared image reconstruction based on L1-and L2-norms 被引量:1
3
作者 Shaosheng DAI Dezhou ZHANG +2 位作者 Junjie CUI Xiaoxiao ZHANG Jinsong LIU 《Frontiers of Optoelectronics》 EI CSCD 2017年第2期189-194,共6页
Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challeng... Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved. 展开更多
关键词 infrared (IR) super-resolution sr image reconstruction high frequency layer edge texture
原文传递
Super-resolution reconstruction of astronomical images using time-scale adaptive normalized convolution
4
作者 Rui GUO Xiaoping SHI +1 位作者 Yi ZHU Ting YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1752-1763,共12页
In this work, we describe a new multiframe Super-Resolution(SR) framework based on time-scale adaptive Normalized Convolution(NC), and apply it to astronomical images. The method mainly uses the conceptual basis o... In this work, we describe a new multiframe Super-Resolution(SR) framework based on time-scale adaptive Normalized Convolution(NC), and apply it to astronomical images. The method mainly uses the conceptual basis of NC where each neighborhood of a signal is expressed in terms of the corresponding subspace expanded by the chosen polynomial basis function. Instead of the conventional NC, the introduced spatially adaptive filtering kernel is utilized as the applicability function of shape-adaptive NC, which fits the local image structure information including shape and orientation. This makes it possible to obtain image patches with the same modality,which are collected for polynomial expansion to maximize the signal-to-noise ratio and suppress aliasing artifacts across lines and edges. The robust signal certainty takes the confidence value at each point into account before a local polynomial expansion to minimize the influence of outliers.Finally, the temporal scale applicability is considered to omit accurate motion estimation since it is easy to result in annoying registration errors in real astronomical applications. Excellent SR reconstruction capability of the time-scale adaptive NC is demonstrated through fundamental experiments on both synthetic images and real astronomical images when compared with other SR reconstruction methods. 展开更多
关键词 Astronomical image processing Motion estimation Normalized Convolution(NC) Polynomial expansion Signal-to-noise ratio Super-Resolution srreconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部