针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系...针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。展开更多
文摘针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。