The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new ...The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new numerical simulation approach for hydraulic stimulation has been developed,trying to establish a realistic model of the physics involved.Our new model successfully reproduces dynamic fracture activation,network generation,and overall reservoir permeability enhancement.Its outputs indicate that natural fractures facilitate stimulation far beyond the near-wellbore area,and can significantly improve the hydraulic conductivity of unconventional geo-energy reservoirs.According to our model,the fracture activation patterns are jointly determined by the occurrence of natural fractures and the in situ stress.High-density natural fractures,high-fluid pressure,and low effective stress environments promote the formation of complex fracture networks during stimulation.Multistage or multicluster fracturing treatments with an appropriate spacing also increase the stimulated reservoir area(SRA).The simulation scheme demonstrated in this work offers the possibility to elucidate the complex multiphysical couplings seen in the field through detailed site-specific modeling.展开更多
Pulsating hydraulic fracturing(PHF)is a promising fracturing method and can generate a dynamic periodic pressure.The periodic pressure can induce fatigue failure of rocks and decrease initiation pressure of fracture.I...Pulsating hydraulic fracturing(PHF)is a promising fracturing method and can generate a dynamic periodic pressure.The periodic pressure can induce fatigue failure of rocks and decrease initiation pressure of fracture.If the frequency of periodic pressure exceeds 10 Hz,the distribution of pressure along the main fracture will be heterogeneous,which is much different from the one induced by the common fracturing method.In this study,the impact of this special spatial feature of pressure on hydraulic fracture is mainly investigated.A coupled numerical simulation model is first proposed and verified through experimental and theoretical solutions.The mechanism of secondary fracture initiation around the main fracture is then discovered.In addition,sensitivity studies are conducted to find out the application potential of this new method.The results show that(1)this coupled numerical simulation model is accurate.Through comparison with experimental and theoretical data,the average error of this coupled model is less than 1.01%.(2)Even if a reservoir has no natural fracture,this heterogeneous distribution pressure can also cause many secondary fractures around the main fracture.(3)The mechanism of secondary fracture initiation is that this heterogeneous distribution pressure causes tensile stress at many locations along the main fracture.(4)Through adjusting the stimulation parameters,the stimulation efficiency can be improved.The average and amplitude of pressure can increase possibility of secondary fracture initiation.The frequency of this periodic pressure can increase number of secondary fractures.Even 6 secondary fractures along a 100 m-length main fracture can be generated.(5)The influence magnitudes of stimulation parameters are larger than ones of geomechanical properties,therefore,this new fracturing method has a wide application potential.展开更多
This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the produ...This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the production performance of Gulong shale oil wells.Under the control of high-density bedding fractures,fracturing in the Gulong shale results in a complex fracture morphology,yet with highly suppressed fracture height and length.Hydraulic fracturing fails to generate artificial fractures with sufficient lengths and heights,which is a main restraint on the effective stimulation in the Gulong shale oil reservoirs.In this regard,the fracturing design shall follow the strategy of"controlling near-wellbore complex fractures and maximizing the extension of main fractures"Increasing the proportions of guar gum fracturing fluids,reducing perforation clusters within one fracturing stage,raising pump rates and appropriately exploiting stress interference are conducive to fracture propagation and lead to a considerably expanded stimulated reservoir volume(SRV).The upgraded main hydraulic fracturing technology is much more applicable to the Gulong shale oil reservoirs.It accelerates the oil production with a low flowback rate and lifts oil cut during the initial production of well groups,which both help to improve well production.It is suggested to optimize the hydraulic fracturing technology in six aspects,namely,suppressing propagation of near-wellbore microfractures,improving the pumping scheme of CO_(2),managing the perforating density,enhancing multi-proppant combination,reviewing well pattern/spacing,and discreetly applying fiber-assisted injection,so as to improve the SRv,the distal fracture complexity and the long-term fracture conductivity.展开更多
A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid...A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.展开更多
To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during la...To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.展开更多
Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo...Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.展开更多
Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir reco...Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.展开更多
Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough...Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough fracture networks is still a relatively new area of research and the associated transport mechanisms are still unclear.In this study,representative parameters of rough fracture surfaces formed by supercritical CO_(2) fracturing were used to generate a rough fracture network model based on a spectral synthesis method.Computational fluid dynamics(CFD)coupled with the discrete element method(DEM)was used to study proppant transport in this rough fracture network.To reveal the turning transport mechanism of proppants into branching fractures at the intersections of rough fracture networks,a comparison was made with the behavior within smooth fracture networks,and the effect of key pumping parameters on the proppant placement in a secondary fracture was analyzed.The results show that the transport behavior of proppant in rough fracture networks is very different from that of the one in the smooth fracture networks.The turning transport mechanisms of proppant into secondary fractures in rough fracture networks are gravity-driven sliding,high velocity fluid suspension,and fracture structure induction.Under the same injection conditions,supercritical CO_(2)with high flow Reynolds number still has a weaker ability to transport proppant into secondary fractures than water.Thickening of the supercritical CO_(2)needs to be increased beyond a certain value to have a significant effect on proppant carrying,and under the temperature and pressure conditions of this paper,it needs to be increased more than 20 times(about 0.94 m Pa s).Increasing the injection velocity and decreasing the proppant concentration facilitates the entry of proppant into the branching fractures,which in turn results in a larger stimulated reservoir volume.The results help to understand the proppant transport and placement process in rough fracture networks formed by reservoir stimulation,and provide a theoretical reference for the optimization of proppant pumping parameters in hydraulic fracturing.展开更多
By reviewing the development history of shale oil reservoir stimulation technology of PetroChina Company Limited(PetroChina),we have systematically summarized the main progress of shale oil reservoir stimulation techn...By reviewing the development history of shale oil reservoir stimulation technology of PetroChina Company Limited(PetroChina),we have systematically summarized the main progress of shale oil reservoir stimulation technology of CNPC in five aspects:reservoir stimulation mechanism,fracture-controlled fracturing,geological-engineering integrated reservoir stimulation design platform,low-cost materials,and large well-pad three-dimensional development mode.It is made clear that the major stimulation technology for shale oil reservoir is the high density multi-cluster and fracture-controlled staged fracturing aiming to increase fracture-controlled reserves,lower operation costs and increase economic benefits.Based on comprehensive analysis of the challenges shale oil reservoir stimulation technology faces in three-dimensional development,stimulation parameter optimization for fracture-controlled fracturing,refracturing and low-cost stimulation technology,we proposed five development directions of the stimulation technology:(1)Strengthen the research on integration of geology and engineering to make full use of reservoir stimulation.(2)Deepen the study on fracture-controlled fracturing to improve reserves development degree.(3)Promote horizontal well three-dimensional development of shale oil to realize the production of multiple layers vertically.(4)Research refracturing technology of shale oil reservoir through horizontal well to efficiently tap the remaining reserves between fractures.(5)Develop low-cost stimulation supporting technology to help reduce the cost and increase economic benefit of oilfield development.展开更多
Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodolo...Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir. Microseismic data analysis indicates a direct proportion between microseismic moment magnitude and depth, yet no relation between microseismic activity and either injection rate or injection volume has been observed. However, large microseismic magnitudes have been recorded where hydraulic fracturing stimulation approaches a fault and therefore the geologic framework should be integrated in such programs. In addition, the geometry of fracture growth resulted by proppant interactions with naturally fractured formations follows unpredictable fashion due to redirecting the injection fluids along flow paths associated with the pre-existing fault network in the reservoir. While microseismic imaging is incredibly useful in revealing the fracture geometry and the way the fracture evolves, recently several concerns have been raised regarding the capability of microseismic data to provide the fracture dimensional parameters and the fracture mechanism that could provide detailed information for reservoir characterization.展开更多
A new gas hydrate reservoir stimulation method of in-situ fracturing with transient heating is proposed, in line with analysis of the technological bottlenecks faced by marine gas hydrate production. This method injec...A new gas hydrate reservoir stimulation method of in-situ fracturing with transient heating is proposed, in line with analysis of the technological bottlenecks faced by marine gas hydrate production. This method injects the developed chemical reagents into a hydrate reservoir through hydraulic fracturing, releasing heat during the chemical reaction to increase the hydrate decomposition rate. The chemical reaction product furthermore has a honeycomb structure to support fractures and increase reservoir permeability. Based on the geological model of natural gas hydrate in the South China Sea, three development methods are simulated to evaluate hydrate production capacity, consisting of horizontal well, fractured horizontal well and in-situ fracturing with transient heating well. Compared with the horizontal well, the simulation results show that the cumulative gas production of the fractured horizontal well in one year is 7 times that of the horizontal well, while the cumulative gas production of in-situ fracturing with transient heating well is 12 times that of the horizontal well, which significantly improves daily efficiency and cumulative gas production. In addition, the variation patterns of hydrate saturation and temperature-pressure fields with production time for the three exploitation plans are presented, it being found that three sensitive parameters of fracture conductivity, fracture half-length and fracture number are positively correlated with hydrate production enhancement. Through the simulations, basic data and theoretical support for the optimization of gas hydrate reservoir stimulation scheme has been provided.展开更多
Different from the continental layered sandstone and fracture-pore carbonate reservoirs, the fractured-vuggy carbonate reservoirs in the Tarim Basin are mainly composed of fractured-vuggy bodies of different sizes and...Different from the continental layered sandstone and fracture-pore carbonate reservoirs, the fractured-vuggy carbonate reservoirs in the Tarim Basin are mainly composed of fractured-vuggy bodies of different sizes and shapes. Based on years of study on the geological features, flow mechanisms, high-precision depiction and the recovery mode of fractured-vuggy bodies, the idea of “volumetric development” is proposed and put into practice. A “body by body” production methodology is established with respect to volumetric unit of fractures and vugs based on vuggy body’s spatial allocation and reserves. A variety of development wells, various technological methods, and multi-type injection media are used to develop this type of reservoirs in an all-around way. As a result, the resource and production structures of the Tahe oilfield are significantly improved and a highly efficient development is achieved.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.U22A20166,51904190,12172230 and U19A2098)the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)。
文摘The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new numerical simulation approach for hydraulic stimulation has been developed,trying to establish a realistic model of the physics involved.Our new model successfully reproduces dynamic fracture activation,network generation,and overall reservoir permeability enhancement.Its outputs indicate that natural fractures facilitate stimulation far beyond the near-wellbore area,and can significantly improve the hydraulic conductivity of unconventional geo-energy reservoirs.According to our model,the fracture activation patterns are jointly determined by the occurrence of natural fractures and the in situ stress.High-density natural fractures,high-fluid pressure,and low effective stress environments promote the formation of complex fracture networks during stimulation.Multistage or multicluster fracturing treatments with an appropriate spacing also increase the stimulated reservoir area(SRA).The simulation scheme demonstrated in this work offers the possibility to elucidate the complex multiphysical couplings seen in the field through detailed site-specific modeling.
基金supported by the National Natural Science Foundation of China (Grant No.52004302)Science Foundation of China University of Petroleum,Beijing (No.2462021YXZZ012)the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-01)。
文摘Pulsating hydraulic fracturing(PHF)is a promising fracturing method and can generate a dynamic periodic pressure.The periodic pressure can induce fatigue failure of rocks and decrease initiation pressure of fracture.If the frequency of periodic pressure exceeds 10 Hz,the distribution of pressure along the main fracture will be heterogeneous,which is much different from the one induced by the common fracturing method.In this study,the impact of this special spatial feature of pressure on hydraulic fracture is mainly investigated.A coupled numerical simulation model is first proposed and verified through experimental and theoretical solutions.The mechanism of secondary fracture initiation around the main fracture is then discovered.In addition,sensitivity studies are conducted to find out the application potential of this new method.The results show that(1)this coupled numerical simulation model is accurate.Through comparison with experimental and theoretical data,the average error of this coupled model is less than 1.01%.(2)Even if a reservoir has no natural fracture,this heterogeneous distribution pressure can also cause many secondary fractures around the main fracture.(3)The mechanism of secondary fracture initiation is that this heterogeneous distribution pressure causes tensile stress at many locations along the main fracture.(4)Through adjusting the stimulation parameters,the stimulation efficiency can be improved.The average and amplitude of pressure can increase possibility of secondary fracture initiation.The frequency of this periodic pressure can increase number of secondary fractures.Even 6 secondary fractures along a 100 m-length main fracture can be generated.(5)The influence magnitudes of stimulation parameters are larger than ones of geomechanical properties,therefore,this new fracturing method has a wide application potential.
基金Supported by the National Natural Science Project of China(52274058)the Heilongjiang Province“Open Competition for Best Candidates”Projects(RIPED-2022-JS-1740,RIPED-2022-JS-1853).
文摘This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the production performance of Gulong shale oil wells.Under the control of high-density bedding fractures,fracturing in the Gulong shale results in a complex fracture morphology,yet with highly suppressed fracture height and length.Hydraulic fracturing fails to generate artificial fractures with sufficient lengths and heights,which is a main restraint on the effective stimulation in the Gulong shale oil reservoirs.In this regard,the fracturing design shall follow the strategy of"controlling near-wellbore complex fractures and maximizing the extension of main fractures"Increasing the proportions of guar gum fracturing fluids,reducing perforation clusters within one fracturing stage,raising pump rates and appropriately exploiting stress interference are conducive to fracture propagation and lead to a considerably expanded stimulated reservoir volume(SRV).The upgraded main hydraulic fracturing technology is much more applicable to the Gulong shale oil reservoirs.It accelerates the oil production with a low flowback rate and lifts oil cut during the initial production of well groups,which both help to improve well production.It is suggested to optimize the hydraulic fracturing technology in six aspects,namely,suppressing propagation of near-wellbore microfractures,improving the pumping scheme of CO_(2),managing the perforating density,enhancing multi-proppant combination,reviewing well pattern/spacing,and discreetly applying fiber-assisted injection,so as to improve the SRv,the distal fracture complexity and the long-term fracture conductivity.
基金Supported by National Natural Science Foundation of China(52274020,U21B2069,52288101)General Program of the Shandong Natural Science Foundation(ZR2020ME095)National Key Research and Development Program(2021YFC2800803).
文摘A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.
基金Supported by China National Science and Technology Major Project(2016ZX05023,2017ZX05013-005)
文摘To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.
基金sponsored by the National Natural Science Foundation of China(Grants Nos.52104046 and 52104010).
文摘Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.
基金supported by the Natural Science Foundation of Sichuan“Settlement and Transport Mechanism of Biomimetic Dandelion Proppant in Fracture” (No.23NSFSC5596)the China Postdoctoral Science Foundation (No.2023M742904)。
文摘Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.
基金the support from the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2024JC-YBQN-0381,2023JC-QN-0403)+2 种基金the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JC-37)the Innovation Capability Support Program of Shaanxi(Program No.2023-CX-TD31)the Funded by Open Foundation of Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery,and the Youth Innovation Team of Shaanxi Universities。
文摘Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough fracture networks is still a relatively new area of research and the associated transport mechanisms are still unclear.In this study,representative parameters of rough fracture surfaces formed by supercritical CO_(2) fracturing were used to generate a rough fracture network model based on a spectral synthesis method.Computational fluid dynamics(CFD)coupled with the discrete element method(DEM)was used to study proppant transport in this rough fracture network.To reveal the turning transport mechanism of proppants into branching fractures at the intersections of rough fracture networks,a comparison was made with the behavior within smooth fracture networks,and the effect of key pumping parameters on the proppant placement in a secondary fracture was analyzed.The results show that the transport behavior of proppant in rough fracture networks is very different from that of the one in the smooth fracture networks.The turning transport mechanisms of proppant into secondary fractures in rough fracture networks are gravity-driven sliding,high velocity fluid suspension,and fracture structure induction.Under the same injection conditions,supercritical CO_(2)with high flow Reynolds number still has a weaker ability to transport proppant into secondary fractures than water.Thickening of the supercritical CO_(2)needs to be increased beyond a certain value to have a significant effect on proppant carrying,and under the temperature and pressure conditions of this paper,it needs to be increased more than 20 times(about 0.94 m Pa s).Increasing the injection velocity and decreasing the proppant concentration facilitates the entry of proppant into the branching fractures,which in turn results in a larger stimulated reservoir volume.The results help to understand the proppant transport and placement process in rough fracture networks formed by reservoir stimulation,and provide a theoretical reference for the optimization of proppant pumping parameters in hydraulic fracturing.
基金Supported by the National Science and Technology Major Project(2016ZX05023,2017ZX05013-005)。
文摘By reviewing the development history of shale oil reservoir stimulation technology of PetroChina Company Limited(PetroChina),we have systematically summarized the main progress of shale oil reservoir stimulation technology of CNPC in five aspects:reservoir stimulation mechanism,fracture-controlled fracturing,geological-engineering integrated reservoir stimulation design platform,low-cost materials,and large well-pad three-dimensional development mode.It is made clear that the major stimulation technology for shale oil reservoir is the high density multi-cluster and fracture-controlled staged fracturing aiming to increase fracture-controlled reserves,lower operation costs and increase economic benefits.Based on comprehensive analysis of the challenges shale oil reservoir stimulation technology faces in three-dimensional development,stimulation parameter optimization for fracture-controlled fracturing,refracturing and low-cost stimulation technology,we proposed five development directions of the stimulation technology:(1)Strengthen the research on integration of geology and engineering to make full use of reservoir stimulation.(2)Deepen the study on fracture-controlled fracturing to improve reserves development degree.(3)Promote horizontal well three-dimensional development of shale oil to realize the production of multiple layers vertically.(4)Research refracturing technology of shale oil reservoir through horizontal well to efficiently tap the remaining reserves between fractures.(5)Develop low-cost stimulation supporting technology to help reduce the cost and increase economic benefit of oilfield development.
文摘Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir. Microseismic data analysis indicates a direct proportion between microseismic moment magnitude and depth, yet no relation between microseismic activity and either injection rate or injection volume has been observed. However, large microseismic magnitudes have been recorded where hydraulic fracturing stimulation approaches a fault and therefore the geologic framework should be integrated in such programs. In addition, the geometry of fracture growth resulted by proppant interactions with naturally fractured formations follows unpredictable fashion due to redirecting the injection fluids along flow paths associated with the pre-existing fault network in the reservoir. While microseismic imaging is incredibly useful in revealing the fracture geometry and the way the fracture evolves, recently several concerns have been raised regarding the capability of microseismic data to provide the fracture dimensional parameters and the fracture mechanism that could provide detailed information for reservoir characterization.
基金funded by the National Key Research and Development Program of China(Grant No.2018YFE0208200)the National Natural Science Foundation of China(Grant No.42102352)。
文摘A new gas hydrate reservoir stimulation method of in-situ fracturing with transient heating is proposed, in line with analysis of the technological bottlenecks faced by marine gas hydrate production. This method injects the developed chemical reagents into a hydrate reservoir through hydraulic fracturing, releasing heat during the chemical reaction to increase the hydrate decomposition rate. The chemical reaction product furthermore has a honeycomb structure to support fractures and increase reservoir permeability. Based on the geological model of natural gas hydrate in the South China Sea, three development methods are simulated to evaluate hydrate production capacity, consisting of horizontal well, fractured horizontal well and in-situ fracturing with transient heating well. Compared with the horizontal well, the simulation results show that the cumulative gas production of the fractured horizontal well in one year is 7 times that of the horizontal well, while the cumulative gas production of in-situ fracturing with transient heating well is 12 times that of the horizontal well, which significantly improves daily efficiency and cumulative gas production. In addition, the variation patterns of hydrate saturation and temperature-pressure fields with production time for the three exploitation plans are presented, it being found that three sensitive parameters of fracture conductivity, fracture half-length and fracture number are positively correlated with hydrate production enhancement. Through the simulations, basic data and theoretical support for the optimization of gas hydrate reservoir stimulation scheme has been provided.
文摘Different from the continental layered sandstone and fracture-pore carbonate reservoirs, the fractured-vuggy carbonate reservoirs in the Tarim Basin are mainly composed of fractured-vuggy bodies of different sizes and shapes. Based on years of study on the geological features, flow mechanisms, high-precision depiction and the recovery mode of fractured-vuggy bodies, the idea of “volumetric development” is proposed and put into practice. A “body by body” production methodology is established with respect to volumetric unit of fractures and vugs based on vuggy body’s spatial allocation and reserves. A variety of development wells, various technological methods, and multi-type injection media are used to develop this type of reservoirs in an all-around way. As a result, the resource and production structures of the Tahe oilfield are significantly improved and a highly efficient development is achieved.