期刊文献+
共找到267,167篇文章
< 1 2 250 >
每页显示 20 50 100
Landslide hazard susceptibility evaluation based on SBAS-InSAR technology and SSA-BP neural network algorithm:A case study of Baihetan Reservoir Area 被引量:1
1
作者 GUO Junqi XI Wenfei +4 位作者 YANG Zhiquan SHI Zhengtao HUANG Guangcai YANG Zhengrong YANG Dongqing 《Journal of Mountain Science》 SCIE CSCD 2024年第3期952-972,共21页
Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu... Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions. 展开更多
关键词 Baihetan SBAS-InSAR ssa-bp Landslide hazard susceptibility evaluation
下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
2
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
3
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
4
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network
5
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
6
作者 Chao Zhou NarisuWang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
下载PDF
基于天气状态模式识别的SSA-BP神经网络光伏电厂功率及碳减排量预测
7
作者 胡浔惠 丁伟 +3 位作者 曹敬 陈时熠 李梦阳 姚钦才 《可再生能源》 CAS CSCD 北大核心 2024年第7期877-885,共9页
文章提出了一种基于天气状态模式识别并结合SSA-BP(Sparrow Search Algorithm-Back Propagation)预测光伏出力的方法。首先,在分析辐照度、温度、风速等参数变化规律基础上,基于高斯混合模型,针对专业天气类型开展分类,获得类晴、类雨... 文章提出了一种基于天气状态模式识别并结合SSA-BP(Sparrow Search Algorithm-Back Propagation)预测光伏出力的方法。首先,在分析辐照度、温度、风速等参数变化规律基础上,基于高斯混合模型,针对专业天气类型开展分类,获得类晴、类雨和类阴3种典型的广义天气;然后,将数据作为SSA-BP神经网络输入,对光伏电厂出力分类进行预测;最后,结合碳核算方法学对光伏发电项目碳减排量进行核算。结果表明:利用分类识别和改进的SSA-BP神经网络,在3种天气类型预测中平均相对误差分别为0.195,0.243,0.310;SSA-BP与其他模型相比,平均相对误差降低了17.8%~66.7%。此外,预测CO_(2)减排量与实际核算值相对误差为3.37%,亦表现出良好预测效果。 展开更多
关键词 光伏发电 模式识别 ssa-bp神经网络 功率预测 天气状态
下载PDF
基于SSA-BP神经网络的车-轨-桥系统随机振动分析
8
作者 何旭辉 赵永帅 蔡陈之 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第8期3225-3236,共12页
轨道及桥梁结构参数随机性对车-轨-桥耦合系统的振动影响不能忽略。基于代理模型研究轨道-桥梁间3层弹簧刚度和弹簧阻尼以及桥梁刚度和阻尼的随机性对竖向车-轨-桥耦合系统动力响应的影响。首先,基于经典的车-轨-桥耦合系统力学模型(没... 轨道及桥梁结构参数随机性对车-轨-桥耦合系统的振动影响不能忽略。基于代理模型研究轨道-桥梁间3层弹簧刚度和弹簧阻尼以及桥梁刚度和阻尼的随机性对竖向车-轨-桥耦合系统动力响应的影响。首先,基于经典的车-轨-桥耦合系统力学模型(没有考虑桥墩),采用Monte-Carlo生成2 000个样本集,作为代理模型的训练集。然后,对比SSA-BP(麻雀优化BP算法)与传统BP神经网络、GA-BP神经网络(遗传优化BP算法)对车辆和桥梁响应的预测精度,同时探讨样本数量以及Levenberg-Marquardt和Bayesian Regulation训练算法对SSA-BP神经网络预测精度的影响。最后,假定各随机参数概率分布规律服从高斯型正态分布,所有随机参数变异系数均分为0.05、0.10、0.15、0.20、0.25等5个级别,采用所提出的SSA-BP神经网络研究轨道及桥梁的刚度和阻尼变化对车辆和桥梁响应极值的影响。结果表明:与经典的车-轨-桥耦合系统力学模型相比,所提出的代理模型具有更高的计算效率;SSA-BP模型对车辆和桥梁响应的预测精度高于GA-BP模型,GA-BP模型的预测精度高于传统的BP模型;SSA-BP模型采用Levenberg-Marquardt训练算法对车辆和桥梁响应的预测精度优于Bayesian Regulation训练算法的预测精度;道砟和桥梁之间弹簧刚度的随机变化对桥梁随机振动响应尤为明显;钢轨和轨枕之间弹簧刚度的随机性对车体响应的影响不可忽视,而桥梁刚度和阻尼随机性对车体的影响可不考虑。研究成果可为车轨桥系统随机振动响应预测进一步研究提供依据和参考。 展开更多
关键词 桥梁工程 车轨桥系统 ssa-bp 随机振动 代理模型
下载PDF
基于SSA-BP近似模型的湿式制动器带排转矩参数CSO智能优化
9
作者 李杰 王帅 +1 位作者 兰海 王志勇 《机械传动》 北大核心 2024年第7期128-136,共9页
针对湿式制动器在非制动工况下功率损失的工程问题,考虑摩擦副间隙内部的润滑油对摩擦副带排转矩的影响,运用麻雀搜索算法-反向传播(Sparrow Search Algorithm-Back Propagation,SSABP)神经网络的强大非线性拟合能力,以制动器空载工况... 针对湿式制动器在非制动工况下功率损失的工程问题,考虑摩擦副间隙内部的润滑油对摩擦副带排转矩的影响,运用麻雀搜索算法-反向传播(Sparrow Search Algorithm-Back Propagation,SSABP)神经网络的强大非线性拟合能力,以制动器空载工况为输入量、带排转矩为输出量,建立了湿式制动器近似模型;与传统的BP模型对比,该模型预测精度明显提高,更能满足实际工程的需要;同时,为获取最小带排转矩,采用鸡群优化(Chicken Swarm Optimization,CSO)智能算法对工况参数进行搜索寻优,得到湿式制动器的最佳工况。经试验测试验证,与优化前相比,优化后摩擦副间的带排转矩和功率损失有着明显降低。研究为湿式制动器结构的进一步优化提供了理论基础和工程实践经验。 展开更多
关键词 湿式制动器 带排转矩 ssa-bp模型 CSO算法 近似模型
下载PDF
基于SSA-BP的爆破振动峰值速度预测研究 被引量:1
10
作者 李攀云 高文学 +3 位作者 张小军 何茂林 葛晨雨 王林 《爆破》 CSCD 北大核心 2024年第3期205-211,共7页
为了精准预测爆破振动峰值速度(PPV),有效降低爆破振动的危害,以星光一号露天矿山爆破工程为依托,选取爆心距、堵塞长度、最小抵抗线、炸药单耗、最大单孔装药量、总延期时间、最大单响药量等7个影响因素作为输入变量,采用灰色关联分析... 为了精准预测爆破振动峰值速度(PPV),有效降低爆破振动的危害,以星光一号露天矿山爆破工程为依托,选取爆心距、堵塞长度、最小抵抗线、炸药单耗、最大单孔装药量、总延期时间、最大单响药量等7个影响因素作为输入变量,采用灰色关联分析法评估各因素与PPV之间的相关性,构建麻雀搜索算法(SSA)优化BP神经网络的爆破峰值振速预测模型,对三向峰值振动速度进行预测,并与BP神经网络模型预测结果进行对比分析,得到SSA-BP神经网络模型预测结果的平均误差分别为6.08%、7.34%、1.91%,BP神经网络模型预测结果的平均误差分别为22.19%、54.01%、25.29%。研究结果表明:SSA-BP神经网络模型全面考虑了多种爆破设计参数对振动峰值速度的影响;麻雀搜索优化算法有效解决了传统BP神经网络模型容易陷入局部最优的问题,预测结果更精确,与振速监测值吻合度更高、误差更小;并且极大地缩短了样本数据的学习训练时间,加快BP神经网络预测模型的收敛速度,可为类似露天爆破工程质点峰值振速的预测提供借鉴。 展开更多
关键词 爆破振动 露天矿山 质点峰值振速预测 BP神经网络 ssa-bp神经网络模型
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
11
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) BP神经网络(BPNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
基于SSA-BP神经网络的重力式矿浆浓度检测算法
12
作者 陈永春 黄宋魏 +2 位作者 和丽芳 高徐辉 钟婷婷 《化工自动化及仪表》 CAS 2024年第6期1010-1016,1027,共8页
为了克服现有矿浆浓度检测技术的不足,提高矿浆浓度检测技术在复杂选矿环境中的精度和适应性,在对现有矿浆浓度检测技术进行分析的基础上,提出重力式矿浆浓度检测方法,利用麻雀搜索算法(SSA)改进BP神经网络算法优化关键参数,进行了系统... 为了克服现有矿浆浓度检测技术的不足,提高矿浆浓度检测技术在复杂选矿环境中的精度和适应性,在对现有矿浆浓度检测技术进行分析的基础上,提出重力式矿浆浓度检测方法,利用麻雀搜索算法(SSA)改进BP神经网络算法优化关键参数,进行了系统设计、算法研究和应用测试,结果表明:算法具有检测精度高、适应性强、稳定性好等优点。 展开更多
关键词 ssa-bp神经网络 矿浆浓度 参数校正 重力式
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
13
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
基于SSA-BP算法的超高温陶瓷裂纹长度预测
14
作者 王一宁 刘宝良 +1 位作者 刘洋 李长青 《广东石油化工学院学报》 2024年第4期104-107,共4页
超高温陶瓷构件在航天航空中的运用往往会出现检测方面的困难,在构件产生裂纹后会在一定范围内失效。针对使用传统的BP神经网络预测超高温陶瓷构件的裂纹长度存在的对连接权值和阈值具有较强依赖性导致收敛速度较慢、易陷入局部最优和... 超高温陶瓷构件在航天航空中的运用往往会出现检测方面的困难,在构件产生裂纹后会在一定范围内失效。针对使用传统的BP神经网络预测超高温陶瓷构件的裂纹长度存在的对连接权值和阈值具有较强依赖性导致收敛速度较慢、易陷入局部最优和稳定性差等问题,提出一种基于麻雀搜索算法SSA优化的BP神经网络关于裂纹长度的预测方法。以ABAQUS有限元分析软件得出的超高温陶瓷裂纹长度相关参数构成的基础数据集作为模型的输入。利用SSA优化BP神经网络的初始权值与阈值得到了更好的拟合结果。结果表明利用SSA-BP神经网络进行预测的可行性。 展开更多
关键词 超高温陶瓷 裂纹长度预测 ssa-bp 数值模拟
下载PDF
基于HSS-MCC融合模型及SSA-BP神经网络开展深基坑超大变形预测研究
15
作者 倪小东 张宇科 +3 位作者 焉磊 王东兴 徐硕 王媛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期35-45,共11页
软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神... 软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神经网络在基坑变形预测中得到广泛应用,但在训练过程中,权阈值易陷入局部最优解,影响预测的准确性.据此,依托南京地区典型软土深基坑工程,采用Midas中的HSS模型与MCC模型进行分析,比对两种模型的桩体变形量差异,并基于最小二乘准则对两模型进行线性融合,融合模型可对后续区段监测数据进行校准及补充.通过融合麻雀搜索算法对BP神经网络进行优化,在其训练过程中快速收敛,得到全局最优的权阈值,依托狭长基坑已开挖区段监测数据学习训练,进而依据后续区段浅部开挖揭露深部变形特征,预测结果与实测值吻合度较高.研究结果对软土地区深基坑大变形的预测研究具有重要参考价值. 展开更多
关键词 深基坑 大变形 HSS模型 MCC模型 BP神经网络 麻雀搜索算法
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
16
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
基于SSA-BP的深基坑地表变形预测研究
17
作者 石强 程泷 +1 位作者 杨展 赵嘉 《江西建材》 2024年第6期174-176,179,共4页
文中采用麻雀搜索算法优化BP神经网络,对深圳市某在建地铁车站深基坑周围地表沉降监测点进行变形预测。通过对基坑地表变形监测点DBC16-4的118期监测数据进行训练学习,并与粒子群算法优化BP神经网络、遗传算法优化BP神经网络和标准BP神... 文中采用麻雀搜索算法优化BP神经网络,对深圳市某在建地铁车站深基坑周围地表沉降监测点进行变形预测。通过对基坑地表变形监测点DBC16-4的118期监测数据进行训练学习,并与粒子群算法优化BP神经网络、遗传算法优化BP神经网络和标准BP神经网络横向对比,验证了训练效果。结果表明,麻雀搜索算法对BP神经网络权重寻优速度较快,收敛精度更高,麻雀搜索算法优化BP神经网络模型预测平均相对误差仅为1.72%,拟合精度较其他算法更高,预测效果良好。 展开更多
关键词 深基坑 地表沉降 变形预测 BP神经网络 麻雀搜索算法
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
18
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
基于RLMD与SSA-BP的采煤机工况模式识别
19
作者 王佳宁 魏秀业 +1 位作者 贺全玲 贺妍 《煤炭技术》 CAS 2024年第7期220-224,共5页
针对采煤机工作环境恶劣、振动噪声大、故障率高等特点,提出了一种基于鲁棒性局部均值分解(RLMD)结合麻雀搜索算法(SSA)优化BP神经网络的采煤机工况模式识别方法。首先,对不同工况下采集到的振动数据进行小波包阈值降噪,之后进行RLMD分... 针对采煤机工作环境恶劣、振动噪声大、故障率高等特点,提出了一种基于鲁棒性局部均值分解(RLMD)结合麻雀搜索算法(SSA)优化BP神经网络的采煤机工况模式识别方法。首先,对不同工况下采集到的振动数据进行小波包阈值降噪,之后进行RLMD分解,选取相关系数大于0.1的P_(F)分量对信号进行重构,选取排列熵、样本熵、模糊熵作为每条数据的特征集,最后输入到SSA-BP神经网络中进行工况模式识别,并与PSO-BP、GA-BP的识别结果进行对比,仿真结果表明:该方法的迭代次数最少,同时准确率最高,可达98.33%;最后也对比了数据预处理前后的准确率,证实了所提及的小波包阈值降噪结合RLMD的双重降噪方法的有效性。 展开更多
关键词 采煤机 模式识别 小波包阈值降噪 RLMD ssa-bp
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
20
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部