期刊文献+
共找到1,820篇文章
< 1 2 91 >
每页显示 20 50 100
Analysis of Sea Surface Temperature Cooling in Typhoon Events Passing the Kuroshio Current
1
作者 HU Yuyi SHAO Weizeng +3 位作者 SHEN Wei ZUO Juncheng JIANG Tao HU Song 《Journal of Ocean University of China》 CAS CSCD 2024年第2期287-303,共17页
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s... The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current. 展开更多
关键词 typhoon wave sea surface temperature Kuroshio Current
下载PDF
The Coordinated Influence of Indian Ocean Sea Surface Temperature and Arctic Sea Ice on Anomalous Northeast China Cold Vortex Activities with Different Paths during Late Summer 被引量:1
2
作者 Yitong LIN Yihe FANG +3 位作者 Chunyu ZHAO Zhiqiang GONG Siqi YANG Yiqiu YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期62-77,共16页
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC... The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months. 展开更多
关键词 machine learning method Northeast China cold vortex path classification Indian Ocean sea surface temperature Arctic sea ice model sensitivity test
下载PDF
The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex 被引量:1
3
作者 Tao WANG Qiang FU +5 位作者 Wenshou TIAN Hongwen LIU Yifeng PENG Fei XIE Hongying TIAN Jiali LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2262-2278,共17页
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S... This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations. 展开更多
关键词 Arctic stratospheric polar vortex stratosphere-troposphere interactions North Pacific sea surface temperature Aleutian low
下载PDF
Impacts of Sea Surface Temperature on the Interannual Variability of Winter Haze Days in Guangdong Province 被引量:1
4
作者 刘晴晴 李春晖 +3 位作者 谷德军 郑彬 林爱兰 彭冬冬 《Journal of Tropical Meteorology》 SCIE 2023年第2期168-178,共11页
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading... The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze. 展开更多
关键词 Guangdong province winter haze days interannual variability sea surface temperature ENSO
下载PDF
Diversity on the Interannual Variations of Spring Monthly Precipitation in Southern China and the Associated Tropical Sea Surface Temperature Anomalies 被引量:1
5
作者 郭如月 潘蔚娟 +2 位作者 柯敏玲 魏维 王子谦 《Journal of Tropical Meteorology》 SCIE 2023年第3期337-346,共10页
There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri... There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation. 展开更多
关键词 spring precipitation monthly diversity interannual variation southern China tropical sea surface temperature
下载PDF
Blend with the Sea Surface Temperature from Different Satellites and Their Comparison in the Southeast Pacific Ocean
6
作者 WU Yumei TANG Fenghua +3 位作者 DAI Yang WANG Fei SHI Yongchuang ZHANG Shengmao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期452-458,共7页
The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rate... The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rates of the SST of the blend result were improved highly and more stable throughout the whole year,compared with the result of the single satellite of GMI,GOES,and MODIS.The yearly average coverage rates of GMI,GOES,MODIS,and blend were 43%,48%,30%,and 76%,and their corresponding yearly average standard deviation(SD)were 4%,6%,7%,and 4%,respectively.All the coverage rates of these three satellites were low from April to September.The valid observation days calculated in the whole year over every grid were used to represent the spatial distribution patterns of the coverage rates.The spatial distribution patterns of coverage rates from GOES and MODIS were similar that their valid observation days were higher in the northwest area and lower in the south area,and those of GMI was contrary to the former two.The ranges of valid observation day was from GOES,GMI,and MODIS were 0-364,6-254,and 9-231 d,respectively.After the blend,all the observation day of every grid in the research region was enhanced(103-366 d).Especially the near shore and south area,and the minimum valid observation day increased largely from the single digits to hundreds digit. 展开更多
关键词 sea surface temperature BLEND coverage rate observation day
下载PDF
Correlation Between the Arabian Sea Surface Temperature and the Onset Period of South Asian Summer Monsoon with Trend Analysis on the Intensity
7
作者 HAN Shuzong WANG Ruoqi +1 位作者 ZHANG Shuiping CHEN Zhentao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期930-938,共9页
The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual dis... The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual distribution to a spatially uniform distribution and then to a zonal gradual distribution.The South Asian summer monsoon intensity(SASMI)and South Asian summer monsoon direction(SASMD)indicate that the variation of the ASST is highly related to the formation of the SASM during the summer monsoon period and can contribute to the spread of the SASM from the Southwest Arabian Sea throughout all of South Asia.Results of the correlation between the ASST and SASMI for the same month and its adjacent months were the same,and the areas of the positive correlation between the ASST and SASMI significantly increased from May–June as compared to April–May.The maximum correlation coefficient was 0.86.The results of the ASST and SASMD for the same month and its adjacent months were substantially different.However,the ASST and SASMD for May and April also showed a high positive correlation with a maximum correlation coefficient of 0.61 in the southwestern Arabian Sea.Existence of the ASST had a spatially consistent and significant upward trend with a mean increase of 0.6℃during the summer monsoon period from 1980 to 2020(between April and September),whereas the SASMI had a strengthening trend along the western and southwestern regions of the Arabian Sea and the southeastern region of the Arabian Peninsula.Meanwhile,the rest of the study regions showed a declining trend.Overall,the entire study region showed a slight downward trend,and the average value decreased by 0.02ms^(−1). 展开更多
关键词 Arabian sea surface temperature South Asian summer monsoon Indian summer monsoon air-sea interaction
下载PDF
Contribution of the tropical sea surface temperature in the Arctic tropospheric warming during 1979-2013
8
作者 Lingling Suo 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期108-112,共5页
本文通过CAM6-Nor大气环流模式模拟实验研究热带海表温度在1979-2013年北极对流层增温中的贡献.分析结果表明热带海表温度变化可以解释历史模拟实验中的秋季和1月增温的30%-40%.这意味着热带海表温度可能是1979年至2013年间北极冬季对... 本文通过CAM6-Nor大气环流模式模拟实验研究热带海表温度在1979-2013年北极对流层增温中的贡献.分析结果表明热带海表温度变化可以解释历史模拟实验中的秋季和1月增温的30%-40%.这意味着热带海表温度可能是1979年至2013年间北极冬季对流层变暖的主要驱动因素之一.除了1月份850hPa以下的北极增温,热带海表温度的影响通常来自热带中东部太平洋,热带印度-西太平洋和热带大西洋的联合作用.对1月份850hPa以下的北极增温的影响主要来自热带印度-西太平洋. 展开更多
关键词 热带海表温度 北极气候变化 北极对流层变暖 遥相关
下载PDF
Pacific Sea Surface Temperature Effect Summer Rainfall in Huanghuai, Jianghuai Region in China
9
作者 Tiantian Liu Xin Wang 《Open Journal of Applied Sciences》 2023年第8期1440-1445,共6页
Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Hu... Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Huanghuai and Jianghuai regions is examined as an external forcing factor for short-term climate prediction. Through analysis of global sea surface temperature anomalies and regional anomalies in Huanghuai and Jianghuai, a significant effect related to the main area, the North Pacific region, and the Nino3 corresponding index calculation is found. Various key areas are examined for their relevance, and finally, the mechanism of summer precipitation in two key zones, China’s Huanghuai and Jianghuai regions, is briefly discussed. The main implication is the prediction of season precipitation based on the external forcing signal of sea surface temperature anomaly in China’s Huanghuai and Jianghuai regions. 展开更多
关键词 Summer Rainfall sea surface temperature II Rain Type RELATIVE
下载PDF
Multitime scale variations of sea surface temperature in the China seas based on the HadISST dataset 被引量:14
10
作者 JIN Qihua WANG Hui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第4期14-23,共10页
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main result... The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a. 展开更多
关键词 China seas sea surface temperature multitime scale variations
下载PDF
Study of relationship between wave transport and sea surface temperature anomaly(SSTA) in the tropical Pacific 被引量:2
11
作者 SHI Yongfang WU Kejian +2 位作者 ZHU Xianye YANG Fan ZHANG Yuming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第9期58-66,共9页
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific an... Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies. 展开更多
关键词 wave transport eastern equatorial Pacific sea surface temperature anomaly warm events
下载PDF
THE CORRELATION BETWEEN THE PACIFIC SEA SURFACE TEMPERATURE(SST) and PRECIPITATION OVER NW CHINA 被引量:1
12
作者 王澄海 王式功 +1 位作者 杨德保 董安祥 《Journal of Tropical Meteorology》 SCIE 2003年第1期64-73,共10页
With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows ... With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows that there is good relationship between the North Pacific and spring precipitation in northwestern China. When the SST is of the peak El Ni駉 phase, precipitation is less over this part of the country except for the Qinghai-Tibetan Plateau; when the SST for the months DJF is of the mature El Ni駉 phase, precipitation is more over the region in the subsequent March May; when the North Pacific SST for DJF is of the La Ni馻 pattern, precipitation is less over the plateau in the subsequent March May. For the Pacific SST, the westerly drift, kuroshio current, Californian current and north equatorial current are all significantly correlating with the March May precipitation in northwestern China. Specifically, the SST in DJF over the kuroshio current region is out of phase with the precipitation in northern Xinjiang, i.e. when the former is low, the latter is more. In northwestern China, regions in which March May precipitation response to the variation of SST in the Pacific Ocean are northern Xinjiang, the Qinghai-Tibetan Plateau and areas off its northeastern part, the desert basin and western part of the Corridor of the Great Bend of Yellow River valley (Corridor). 展开更多
关键词 中国 西北地区 太平洋表面温度 sst SVD 奇异值分解 相互关系 气候影响 “厄尔尼诺”现象
下载PDF
Long-term changes in sea surface temperature(SST)within the southern Levantine Basin
13
作者 Tarek M.El-Geziry 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期27-33,共7页
Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern bor... Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin.The analysis is based on monthly SST data for the period 1948-2018.The southern Levantine Basin has undergone SST increase,during the last 71 years.In this study,a consistent warming trend has been found for the analysed SST data series,with a rate of 0.04℃/a,i.e.,0.4℃/(10 a).From 1975 to 1991 the mean annual SST was 17.1℃,and this increased to be 19.2℃,over the period 2002-2018.Results revealed two opposite trends of variability:a decreasing trend(−0.06℃/a)over the period 1975-1991,and an increasing trend(0.2℃/a)from 2002 to 2018.Over the period 1948-2018,positive mean annual SST anomalies had an average of 1.8℃,and negative anomalies had an average of−1.1℃.The lowest SST total increase was found from January to April,with values about 0.03℃,while the highest warming appeared from June to September.The driving mechanisms behind the SST changes need to be more investigated,to understand the future trends and impacts of climate change in the Levantine Basin. 展开更多
关键词 Mediterranean sea Levantine Basin sea surface temperature ANOMALY TRENDS WARMING
下载PDF
The effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties 被引量:8
14
作者 Qian Yongfu Department of Atmospheric Sciences, Nanjing University, Nanjing 210008, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第4期535-547,共13页
A modified and improved primitive equation numerical model with p-sigma incorporated vertical coordinates is used to simulate the effects of different sea surface temperature distributions over the western Pacific on ... A modified and improved primitive equation numerical model with p-sigma incorporated vertical coordinates is used to simulate the effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties. The different sea surface temperature (SST) distributions are automatically generated in the time integrations by using two different SST models, one of which is called the deep ocean model (DOM) and the other the shallow ocean model (SOM). The SST generated by the DOM has the distribution pattern of the initial SST which is similar to the pattern in the cold water years over the western Pacific, while the SST generated by the SOM has the pattern similar to that in the warm water years. The differences between the experimental results by using DOM and SOM are analyzed in detail. The analyses indicate that the most basic and important characteristics of the summer monsoon climate can be simulated successfully in both experiments, that means the climatic properties in the monsoonal climate regions are mainly determined by the seasonal heating, the contrast between the land and the sea, the topography, and the physical properties of the underlying surfaces. However, the differences between the two experiments tell us that the climatic properties in the summer monsoon regions in the cold water year and the warm water year do differ from each other in details. In the warm water year, the thermal contrast between the land and the sea becomes weaker. Over the warm water area, the upward motions are induced and the dynamical conditions favorable for the convective activities are formed, the Somali low-level cross equatorial current is somewhat weakened, while the cross equatorial currents, east of 90°E, are strongly strengthened, the precipitation amount in the tropical regions largely increases, and the precipitation over the coastal regions increases, too. However the precipitation over the southeast China and its coastal area decreases. The precipitation amount mainly depends on the strength of the convective activity. 展开更多
关键词 sea surface temperature anomaly MONSOON climate modelling computational models of sst
下载PDF
The long-term variability of sea surface temperature in the seas east of China in the past 40 a 被引量:9
15
作者 WANG Fan MENG Qingjia +1 位作者 TANG Xiaohui HU Dunxin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第3期48-53,共6页
The global surface temperature change since the mid-19th century has caused general concern and intensive study. However, long-term changes in the marginal seas, including the seas east of China, are not well understo... The global surface temperature change since the mid-19th century has caused general concern and intensive study. However, long-term changes in the marginal seas, including the seas east of China, are not well understood because long-term observations are sparse and, even when they exist, they are over limited areas. Preliminary results on the long-term variability of sea surface temperature (SST) in summer and winter in the seas east of China during the period of 1957-2001 are reported using the Ocean Science Database of Institute of Oceanology, Chinese Academy of Sciences, the coastal hydrological station in situ and satellite data. The results show well-defined warming trends in the study area. However warming and cooling trends vary from decade to decade, with steady and rapid warming trends after the 1980s and complicated spatial patterns. The distribution of SST variation is intricate and more blurred in the areas far away from the Kuroshio system. Both historical and satellite data sets show significant warming trends after 1985. The warming trends are larger and spread to wider areas in winter than in summer, which means decrease in the seasonal cycle of SST probably linked with recently observed increase of the tropical zooplankton species in the region. Spatial structures of the SST trends are roughly consistent with the circulation pattern especially in winter when the meridional SST gradients are larger, suggesting that a horizontal advection may play an important role in the long-term SST variability in winter. 展开更多
关键词 sea surface temperature long-term variability East China sea winter circulation
下载PDF
Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation 被引量:6
16
作者 HU Dingzhu TIAN Wenshou +2 位作者 XIE Fei SHU Jianchuan Sandip DHOMSE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期888-900,共13页
Using a state-of-the-art chemistry-climate model,we analyzed the atmospheric responses to increases in sea surface temperature (SST).The results showed that increases in SST and the SST meridional gradient could int... Using a state-of-the-art chemistry-climate model,we analyzed the atmospheric responses to increases in sea surface temperature (SST).The results showed that increases in SST and the SST meridional gradient could intensify the subtropical westerly jets and significantly weaken the northern polar vortex.In the model runs,global uniform SST increases produced a more significant impact on the southern stratosphere than the northern stratosphere,while SST gradient increases produced a more significant impact on the northern stratosphere.The asymmetric responses of the northern and southern polar stratosphere to SST meridional gradient changes were found to be mainly due to different wave properties and transmissions in the northern and southern atmosphere.Although SST increases may give rise to stronger waves,the results showed that the effect of SST increases on the vertical propagation of tropospheric waves into the stratosphere will vary with height and latitude and be sensitive to SST meridional gradient changes.Both uniform and non-uniform SST increases accelerated the large-scale Brewer-Dobson circulation (BDC),but the gradient increases of SST between 60°S and 60°N resulted in younger mean age-of-air in the stratosphere and a larger increase in tropical upwelling,with a much higher tropopause than from a global uniform 1.0 K SST increase. 展开更多
关键词 numerical simulation stratospheric temperature sea surface temperature Brewer-Dobson circulation
下载PDF
The influence of ENSO on sea surface temperature variations in the China seas 被引量:5
17
作者 LIU Na WANG Hui +1 位作者 LING Tiejun FENG Licheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第9期21-29,共9页
Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event. By analyzing the monthly data of HadISST from 1950 to 2007, it shows that the interannual component of SST anomalies p... Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event. By analyzing the monthly data of HadISST from 1950 to 2007, it shows that the interannual component of SST anomalies peak approximately 10 months after SST anomalies peak in the eastern equatorial Pacific. As the ENSO event progresses, the positive SST anomalies spread throughout the China seas and eastward along the Kuroshio extension. Atmospheric reanalysis data demonstrate that changes in the net surface heat flux entering into the China seas are responsible for the SST variability. During E1 Nifio, the western north Pacific anticyclone is generated, with anomalous southwester lies prevailing along the East Asian coast. This anticyclone reduces the mean surface wind speed which decreases the surface heat flux and then increases the SST. The delays between the developing of this anticyclone and the south Indian Ocean anticyclone with approximately 3-6 months cause the 2-3 months lag of the surface heat flux between the China seas and the Indian Ocean. The northwestern Pacific anticyclone is the key process bridging the warming in the eastern equatorial Pacific and that in the China seas. 展开更多
关键词 sea surface temperature China seas ENSO ANTICYCLONE
下载PDF
Trends of sea surface temperature and sea surface temperature fronts in the South China Sea during 2003–2017 被引量:3
18
作者 Yi Yu Hao-Ran Zhang +1 位作者 Jiangbo Jin Yuntao Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第4期106-115,共10页
The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C p... The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C per decade,with the strongest warming identified in southeastern Vietnam. Although the rate of warming is comparable in summer and winter for the entire basin, the corresponding spatial patterns of the linear trend are substantially different between them. The SST trend to the west of the Luzon Strait is characterized by rapid warming in summer, exceeding approximately 0.6°C per decade, but the trend is insignificant in winter. The strongest warming trend occurs in the southeast of Vietnam in winter, with much less pronounced warming in summer. A positive trend of SST fronts is identified for the coast of China and is associated with increasing wind stress. The increasing trend of SST fronts is also found in the east of Vietnam. Large-scale circulation, such as El Ni?o, can influence the trends of the SST and SST fronts. A significant correlation is found between the SST anomaly and Ni?o3.4 index, and the ENSO signal leads by eight months. The basin averaged SST linear trends increase after the El Ni?o event(2009–2010), which is, at least, due to the rapid warming rate causing by the enhanced northeasterly wind. Peaks of positive anomalous SST and negatively anomalous SST fronts are found to co-occur with the strong El Ni?o events. 展开更多
关键词 South China sea sea surface temperature sea surface temperature FRONTS WARMING trend wind stress
下载PDF
A model of sea surface temperature front detection based on a threshold interval 被引量:5
19
作者 PING Bo SU Fenzhen +2 位作者 MENG Yunshan FANG Shenghui DU Yunyan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期65-71,共7页
A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications ... A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi- ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter- mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts. 展开更多
关键词 sea surface temperature threshold setting Sobel algorithm edge detection front detection
下载PDF
Assessment of the initial sea surface temperature product of the scanning microwave radiometer aboard on HY-2 satellite 被引量:5
20
作者 ZHAO Yili ZHU Jianhua +5 位作者 LIN Mingsen CHEN Chuntao HUANG Xiaoqi WANG He ZHANG Youguang PENG Hailong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期109-113,共5页
HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST... HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement. 展开更多
关键词 VALIDATION sea surface temperature HY-2 satellite microwave radiometer
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部