期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分层欠采样和Bi-GRU的恶意行为检测模型
被引量:
2
1
作者
周娅
李赛
《计算机工程与设计》
北大核心
2022年第2期413-419,共7页
为解决类不平衡和样本重叠问题,提出一种基于分层欠采样和Bi-GRU的恶意行为检测模型(SSU-BG)。数据预处理及特征模型的构建;基于欧氏距离算法统计出高频样本的最高密度点及类内平均距离,根据样本分布特点将高频类样本依次划分为稀疏区...
为解决类不平衡和样本重叠问题,提出一种基于分层欠采样和Bi-GRU的恶意行为检测模型(SSU-BG)。数据预处理及特征模型的构建;基于欧氏距离算法统计出高频样本的最高密度点及类内平均距离,根据样本分布特点将高频类样本依次划分为稀疏区、稀疏区边界区及稠密区3个区域,根据抽取出样本标签数在稠密区内划分出不同层次圆环,计算每个类的不均衡度,计算其均值作为整个样本的采样比例,按照此时的采样比例在稀疏区边界区的圆环域和稠密区进行分层随机欠采样;将文本向量输入训练好的Bi-GRU模型中。实验结果表明,该模型改善了整体检测效果,提高了恶意评论检测率。
展开更多
关键词
恶意评论
类不平衡
分层欠采样
Bi-GRU网络
ssu-bg算法
下载PDF
职称材料
题名
基于分层欠采样和Bi-GRU的恶意行为检测模型
被引量:
2
1
作者
周娅
李赛
机构
桂林电子科技大学计算机与信息安全学院
出处
《计算机工程与设计》
北大核心
2022年第2期413-419,共7页
基金
国家自然科学基金项目(61662015)
广西科技厅科技开发重点基金项目(桂科攻1598019)
NSFC-广东联合基金重点基金项目(U1501252)。
文摘
为解决类不平衡和样本重叠问题,提出一种基于分层欠采样和Bi-GRU的恶意行为检测模型(SSU-BG)。数据预处理及特征模型的构建;基于欧氏距离算法统计出高频样本的最高密度点及类内平均距离,根据样本分布特点将高频类样本依次划分为稀疏区、稀疏区边界区及稠密区3个区域,根据抽取出样本标签数在稠密区内划分出不同层次圆环,计算每个类的不均衡度,计算其均值作为整个样本的采样比例,按照此时的采样比例在稀疏区边界区的圆环域和稠密区进行分层随机欠采样;将文本向量输入训练好的Bi-GRU模型中。实验结果表明,该模型改善了整体检测效果,提高了恶意评论检测率。
关键词
恶意评论
类不平衡
分层欠采样
Bi-GRU网络
ssu-bg算法
Keywords
toxic comments
class imbalance
hierarchical undersampling
Bi-GRU network
ssu-bg
algorithm
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分层欠采样和Bi-GRU的恶意行为检测模型
周娅
李赛
《计算机工程与设计》
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部