期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ST-ConvLSTM的南海海表面CO_(2)分压的空间和时间序列预测
被引量:
1
1
作者
高宇
李爽
+1 位作者
郝鹏
宋金宝
《海洋与湖沼》
CAS
CSCD
北大核心
2023年第6期1573-1585,共13页
海表面二氧化碳分压(pCO_(2))的未来变化趋势,对统计评估全球碳收支以及理解全球气候变化背景下的海洋酸化现象至关重要。目前传统的海面pCO_(2)预测方法大部分基于有限的实测数据,然而实测数据存在着时间和地理方面的制约,且计算成本...
海表面二氧化碳分压(pCO_(2))的未来变化趋势,对统计评估全球碳收支以及理解全球气候变化背景下的海洋酸化现象至关重要。目前传统的海面pCO_(2)预测方法大部分基于有限的实测数据,然而实测数据存在着时间和地理方面的制约,且计算成本较高。近年来,随着时空观测数据的爆炸性增长,基于深度学习的数据驱动模型在海表面pCO_(2)预测方面中表现出良好的潜力。然而,由于多种环境因素与海表面pCO_(2)之间的关系错综复杂,到目前为止尚无十分简单有效的相关模型来对海表面pCO_(2)进行预测。为应对这一挑战,利用时空卷积长短时记忆神经网络(ST-ConvLSTM)模型,通过海面温度(sea surface temperature,SST)、海面盐度(sea surface salinity,SSS)、叶绿素a浓度(chl a)和海面pCO_(2)数据,预测南海的海面pCO_(2),并将2019年1~12月的数据作为测试集对模型的表现进行了验证。结果显示,ST-ConvLSTM模型的预测因子均方根误差、平均绝对误差和决定系数分别为0.981 Pa、0.711 Pa和0.997。对比卷积LSTM(ConvLSTM)、随机森林和广义回归神经网络(generalized regression neural network,GRNN)三种方法,证实本文所提出的方法在解决南海pCO_(2)预测问题上是可靠的。
展开更多
关键词
st-convlstm
模型
中国南海
海表面二氧化碳分压
深度学习
下载PDF
职称材料
题名
基于ST-ConvLSTM的南海海表面CO_(2)分压的空间和时间序列预测
被引量:
1
1
作者
高宇
李爽
郝鹏
宋金宝
机构
浙江大学海洋学院
出处
《海洋与湖沼》
CAS
CSCD
北大核心
2023年第6期1573-1585,共13页
基金
国家自然科学基金项目,41830533号。
文摘
海表面二氧化碳分压(pCO_(2))的未来变化趋势,对统计评估全球碳收支以及理解全球气候变化背景下的海洋酸化现象至关重要。目前传统的海面pCO_(2)预测方法大部分基于有限的实测数据,然而实测数据存在着时间和地理方面的制约,且计算成本较高。近年来,随着时空观测数据的爆炸性增长,基于深度学习的数据驱动模型在海表面pCO_(2)预测方面中表现出良好的潜力。然而,由于多种环境因素与海表面pCO_(2)之间的关系错综复杂,到目前为止尚无十分简单有效的相关模型来对海表面pCO_(2)进行预测。为应对这一挑战,利用时空卷积长短时记忆神经网络(ST-ConvLSTM)模型,通过海面温度(sea surface temperature,SST)、海面盐度(sea surface salinity,SSS)、叶绿素a浓度(chl a)和海面pCO_(2)数据,预测南海的海面pCO_(2),并将2019年1~12月的数据作为测试集对模型的表现进行了验证。结果显示,ST-ConvLSTM模型的预测因子均方根误差、平均绝对误差和决定系数分别为0.981 Pa、0.711 Pa和0.997。对比卷积LSTM(ConvLSTM)、随机森林和广义回归神经网络(generalized regression neural network,GRNN)三种方法,证实本文所提出的方法在解决南海pCO_(2)预测问题上是可靠的。
关键词
st-convlstm
模型
中国南海
海表面二氧化碳分压
深度学习
Keywords
st-convlstm
the South China Sea
sea surface pCO_(2)prediction
deep learning
分类号
P731.26 [天文地球—海洋科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ST-ConvLSTM的南海海表面CO_(2)分压的空间和时间序列预测
高宇
李爽
郝鹏
宋金宝
《海洋与湖沼》
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部