期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Detection and Classification of Transmission Line Transient Faults Based on Graph Convolutional Neural Network 被引量:4
1
作者 Houjie Tong Robert C.Qiu +3 位作者 Dongxia Zhang Haosen Yang Qi Ding Xin Shi 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期456-471,共16页
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex... We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability. 展开更多
关键词 graph convolutional network(GCN) power transmission line fault detection and classification spatio-temporal data topology information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部