Background:The isometric steady-state following active lengthening is associated with greater torque production and lower activation,as measured by electromyographic activity(EMG),in comparison with a purely isometric...Background:The isometric steady-state following active lengthening is associated with greater torque production and lower activation,as measured by electromyographic activity(EMG),in comparison with a purely isometric contraction(ISO)at the same joint angle.This phenomenon is termed residual force enhancement(RFE).While there has been a great deal of research investigating the basic mechanisms of RFE,little work has been performed to understand the everyday relevance of RFE.The purpose of this study was to investigate whether neuromuscular control strategies differ between ISO and RFE by measuring torque steadiness of the human ankle plantar flexors.Methods:Following ISO maximal voluntary contractions in 12 males(25±4 years),an active lengthening contraction was performed at 15°/s over a 30°ankle excursion,ending at the same joint angle as ISO(5°dorsiflexion;RFE).Surface EMG of the tibialis anterior and soleus muscles was recorded during all tasks.Torque steadiness was determined as the standard deviation(SD)and coefficient of variation(CV)of the torque trace in the ISO and RFE condition during activation-matching(20%and 60%integrated EMG)and torque-matching(20%and 60%maximal voluntary contraction)experiments.Two-tailed,paired t tests were used,within subjects,to determine the presence of RFE/activation reduction(AR)and whether there was a difference in torque steadiness between ISO and RFE conditions.Results:During the maximal and submaximal conditions,there was 5%-9%RFE with a 9%-11%AR(p<0.05),respectively,with no difference in antagonist coactivation between RFE and ISO(p>0.05).There were no differences in SD and CV of the torque trace for the 20%and60%activation-matching or the 60%and maximal torque-matching trials in either the RFE or ISO condition(p>0.05).During the 20%torquematching trial,there were~37%higher values for SD and CV in the RFE as compared with the ISO condition(p<0.05).A significant moderate-to-strong negative relationship was identified between the reduction in torque steadiness following active lengthening and the accompanying AR(p<0.05).Conclusion:It appears that while the RFE-associated AR provides some improved neuromuscular economy,this comes at the cost of increased torque fluctuations in the isometric steady-state following active lengthening during submaximal contractions.展开更多
This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delay...This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delays eventually resulted in the pandemic’s containment.To ensure the safety of the host population,this concept integrates quarantine and the COVID-19 vaccine.We investigate the stability of the proposed models.The fundamental reproduction number influences stability conditions.According to our findings,asymptomatic cases considerably impact the prevalence of Omicron infection in the community.The real data of the Omicron variant from Chennai,Tamil Nadu,India,is used to validate the outputs.展开更多
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte...The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).展开更多
A genuine technological issue–the thermal convection of liquid in a rotating cavity–is investigated experimentally.The experiments are conducted within a horizontal annulus with isothermal boundaries. The inner boun...A genuine technological issue–the thermal convection of liquid in a rotating cavity–is investigated experimentally.The experiments are conducted within a horizontal annulus with isothermal boundaries. The inner boundaryof the annulus has a higher temperature, thus exerting a stabilising influence on the system. It is shown that whenthe layer rotation velocity diminishes, two-dimensional azimuthally periodic convective rolls, rotating togetherwith the cavity, emerge in a threshold manner. The development of convection is accompanied by a significantintensification of heat transfer through the layer. It is shown that the averaged thermal convection excitation inthe form of a system of two-dimensional rolls occurs against the background of oscillations of a non-isothermalfluid in the cavity reference frame caused by the gravity field. The excitation threshold and the structure ofconvective rolls are consistent with the results of the earlier theoretical studies by the authors performed usingthe equations of “vibrational” convection obtained by the averaging method. Furthermore, the experiments haverevealed a new type of averaged flow in the form of a spatially periodic system of toroidal vortices. It is shown thata steady streaming, excited by the inertial oscillations of the fluid, is responsible for the generation of the toroidalvortices. These flows develop in a non-threshold manner and are most clearly manifested in a case of resonantexcitation of one of the inertial modes.展开更多
This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re ...This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.展开更多
A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system a...A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.展开更多
Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the ...Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.展开更多
In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 bou...In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.展开更多
Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternati...Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.展开更多
An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are ...An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO,which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions.The proposed approach runs several orders of magnitude faster than the traditional numerical methods.The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach.Furthermore,the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids,thereby improving the accuracy in the near-wall region.There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
We propose that the trapped antimatter in super massive black hole ergoregions acts as detonators that triggers black hole to white hole transitions creating huge BHs explosions that generate BH spray that acts as see...We propose that the trapped antimatter in super massive black hole ergoregions acts as detonators that triggers black hole to white hole transitions creating huge BHs explosions that generate BH spray that acts as seeds for new galaxies creation. We propose that by mapping and simulating the cosmic web structure, it may be possible to learn if the universe was created in a single big bang that started a single chain of BH explosions mini-creation event cycles, or alternatively, the BH explosions mini-creation event cycles are uncorrelated spacelike events, and the universe had no single primeval atom beginning. .展开更多
The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal prote...The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.展开更多
Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distributi...Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.展开更多
Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using...Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada
文摘Background:The isometric steady-state following active lengthening is associated with greater torque production and lower activation,as measured by electromyographic activity(EMG),in comparison with a purely isometric contraction(ISO)at the same joint angle.This phenomenon is termed residual force enhancement(RFE).While there has been a great deal of research investigating the basic mechanisms of RFE,little work has been performed to understand the everyday relevance of RFE.The purpose of this study was to investigate whether neuromuscular control strategies differ between ISO and RFE by measuring torque steadiness of the human ankle plantar flexors.Methods:Following ISO maximal voluntary contractions in 12 males(25±4 years),an active lengthening contraction was performed at 15°/s over a 30°ankle excursion,ending at the same joint angle as ISO(5°dorsiflexion;RFE).Surface EMG of the tibialis anterior and soleus muscles was recorded during all tasks.Torque steadiness was determined as the standard deviation(SD)and coefficient of variation(CV)of the torque trace in the ISO and RFE condition during activation-matching(20%and 60%integrated EMG)and torque-matching(20%and 60%maximal voluntary contraction)experiments.Two-tailed,paired t tests were used,within subjects,to determine the presence of RFE/activation reduction(AR)and whether there was a difference in torque steadiness between ISO and RFE conditions.Results:During the maximal and submaximal conditions,there was 5%-9%RFE with a 9%-11%AR(p<0.05),respectively,with no difference in antagonist coactivation between RFE and ISO(p>0.05).There were no differences in SD and CV of the torque trace for the 20%and60%activation-matching or the 60%and maximal torque-matching trials in either the RFE or ISO condition(p>0.05).During the 20%torquematching trial,there were~37%higher values for SD and CV in the RFE as compared with the ISO condition(p<0.05).A significant moderate-to-strong negative relationship was identified between the reduction in torque steadiness following active lengthening and the accompanying AR(p<0.05).Conclusion:It appears that while the RFE-associated AR provides some improved neuromuscular economy,this comes at the cost of increased torque fluctuations in the isometric steady-state following active lengthening during submaximal contractions.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444)The first author is partially supported by the University Research Fellowship(PU/AD-3/URF/21F37237/2021 dated 09.11.2021)of PeriyarUniversity,SalemThe second author is supported by the fund for improvement of Science and Technology Infrastructure(FIST)of DST(SR/FST/MSI-115/2016).
文摘This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delays eventually resulted in the pandemic’s containment.To ensure the safety of the host population,this concept integrates quarantine and the COVID-19 vaccine.We investigate the stability of the proposed models.The fundamental reproduction number influences stability conditions.According to our findings,asymptomatic cases considerably impact the prevalence of Omicron infection in the community.The real data of the Omicron variant from Chennai,Tamil Nadu,India,is used to validate the outputs.
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘A genuine technological issue–the thermal convection of liquid in a rotating cavity–is investigated experimentally.The experiments are conducted within a horizontal annulus with isothermal boundaries. The inner boundaryof the annulus has a higher temperature, thus exerting a stabilising influence on the system. It is shown that whenthe layer rotation velocity diminishes, two-dimensional azimuthally periodic convective rolls, rotating togetherwith the cavity, emerge in a threshold manner. The development of convection is accompanied by a significantintensification of heat transfer through the layer. It is shown that the averaged thermal convection excitation inthe form of a system of two-dimensional rolls occurs against the background of oscillations of a non-isothermalfluid in the cavity reference frame caused by the gravity field. The excitation threshold and the structure ofconvective rolls are consistent with the results of the earlier theoretical studies by the authors performed usingthe equations of “vibrational” convection obtained by the averaging method. Furthermore, the experiments haverevealed a new type of averaged flow in the form of a spatially periodic system of toroidal vortices. It is shown thata steady streaming, excited by the inertial oscillations of the fluid, is responsible for the generation of the toroidalvortices. These flows develop in a non-threshold manner and are most clearly manifested in a case of resonantexcitation of one of the inertial modes.
文摘This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.
文摘A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.
文摘Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.
基金supported by the National NaturalScience Foundation of China(11971069 and 12126307)。
文摘In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.
基金Research was supported by the NSFC Grant 11872210Research was supported by the NSFC Grant 11872210 and Grant No.MCMS-I-0120G01+1 种基金Research supported in part by the AFOSR Grant FA9550-20-1-0055NSF Grant DMS-2010107.
文摘Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.
文摘An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO,which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions.The proposed approach runs several orders of magnitude faster than the traditional numerical methods.The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach.Furthermore,the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids,thereby improving the accuracy in the near-wall region.There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
文摘We propose that the trapped antimatter in super massive black hole ergoregions acts as detonators that triggers black hole to white hole transitions creating huge BHs explosions that generate BH spray that acts as seeds for new galaxies creation. We propose that by mapping and simulating the cosmic web structure, it may be possible to learn if the universe was created in a single big bang that started a single chain of BH explosions mini-creation event cycles, or alternatively, the BH explosions mini-creation event cycles are uncorrelated spacelike events, and the universe had no single primeval atom beginning. .
文摘The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.
文摘Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.
基金The National Natural Science Foundation of China(No.40902076)the Natural Science Foundation of Jiangsu Province(No.BK20141224)
文摘Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.