According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
This paper generally compares the essential features between tokamaks and stellarators,based on previous review work individually made by authors on several specific topics,such as theories,bulk plasma transport and e...This paper generally compares the essential features between tokamaks and stellarators,based on previous review work individually made by authors on several specific topics,such as theories,bulk plasma transport and edge divertor physics,along with some recent results.It aims at summarizing the main results and conclusions with regard to the advantages and disadvantages in these two types of magnetic fusion devices.The comparison includes basic magnetic configurations,magnetohydrodynamic(MHD)instabilities,operational limits and disruptions,neoclassical and turbulent transport,confinement scaling and isotopic effects,plasma rotation,and edge and divertor physics.Finally,a concept of quasi-symmetric stellarators is briefly referred along with a comparison of future application for fusion reactors.展开更多
Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a coop...Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a cooperation research item co-supported by the National Nature Science Foundation of China and the Max-Planck Institute of Plasma Physics, Garching, Germany. The experiments of the gas jet with hydrogen or deuterium on W7-AS were implemented. The experimental results exhibit the following features such as high fuelling efficiency, stable high-density plasmas and reduction of the recycling fluxes from the vessel wall during injection. These crucial points show that the new fuelling method can be applied to long and stable discharges.展开更多
In the project Wendelstein 7-X (W7-X), the popular fieldbus Profibus has been determined as a uniform connection between the central control system and all the subordinate systems. A universal embedded control system ...In the project Wendelstein 7-X (W7-X), the popular fieldbus Profibus has been determined as a uniform connection between the central control system and all the subordinate systems. A universal embedded control system has been developed for W7-X power supply controlling. Siemens 80C167CR microcontroller is used as the central control unit of the system. With a user-defined printed circuit board (PCB) several control buses, i.e., Profibus, CAN, IEEE 488, RS485 and RS 232 have been connected to the microcontroller. The corresponding hardware interfaces for the control buses have been designed. A graphic liquid crystal display(LCD) and a user-defined keyboard are used as user interface. The control software will be developed with a C-like language, i.e., C166 for the controller.展开更多
The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator desi...The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.展开更多
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid...This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.展开更多
There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeede...There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.展开更多
Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when b...Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when balancing stellar categories and their numbers,there is room for improvement in classification accuracy.This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images.A novel neural network,the Stellar Feature Network,is proposed for classifying these images.Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9,encompassing five equal categories(B,A,F,G,K),were used.Comparative experiments validate the effectiveness of the proposed methods and network,achieving significant improvements in classification accuracy.展开更多
As a major interstellar medium,the atomic neutral hydrogen(H I)plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external p...As a major interstellar medium,the atomic neutral hydrogen(H I)plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external perturbations influencing the galaxy.With the beginning of many new radio telescopes and surveys,H_(I)may make a more significant contribution to the understanding of galaxies in the near future.This review discusses the major development of the 21 cm emission-line H_(I)observations and studies in the past few years,including its scaling relations with other galaxy properties,its kinematics and structures,its role in environmental studies,and its constraints on hydrodynamical simulations.The local-Universe H_(I)scaling relations of stellar-massselected samples extend smoothly to 10_(9)M⊙stellar mass,with a tentative evolution to the redshift of∼0.1.The development of measurement techniques enables better estimations of H_(I)non-circular motion,dispersion,and thickness,and new observations revealed extended or extra-planar H_(I)structures,both helpfully constraining the gas accretion,stellar feedback,and star formation processes of galaxy evolution models.H_(I)is very useful for tracing the satellite evolution in dense environments,the studies of which would benefit from ongoing blind H_(I)surveys.Though simulations still cannot fully reproduce H_(I)gas properties,they help to understand the role of possible factors in regulating H_(I)properties.展开更多
Open clusters(OCs) are common in the Milky Way, but most of them remain undiscovered. There are numerous techniques, including some machine-learning algorithms, available for the exploration of OCs. However, each meth...Open clusters(OCs) are common in the Milky Way, but most of them remain undiscovered. There are numerous techniques, including some machine-learning algorithms, available for the exploration of OCs. However, each method has its limitations and therefore, different approaches to discovering OCs hold significant values. We develop a comprehensive approach method to automatically explore the data space and identify potential OC candidates with relatively reliable membership determination. This approach combines the techniques of Hierarchical Density-Based Spatial Clustering of Applications with Noise, Gaussian mixture model, and a novel cluster member identification technique, color excess constraint. The new method exhibits efficiency in detecting OCs while ensuring precise determination of cluster memberships. Because the main feature of this technique is to add an extra constraint(EC) for the members of cluster candidates using the homogeneity of color excess,compared to typical blind search codes, it is called Blind Search-Extra Constraint(BSEC) method. It is successfully applied to the Gaia Data Release 3, and 83 new OCs are found, whose color–magnitude diagrams(CMDs) are fitted well to the isochrones. In addition, this study reports 621 new OC candidates with discernible main sequence or red giant branch. It is shown that BSEC technique can discard some false negatives of previous works, which takes about three percentage of known clusters. It shows that as an EC, the color excess(or twocolor) constraint is useful for removing fake cluster member stars from the clusters that are identified from the positions and proper motions of stars, and getting more precise CMDs, when differential reddening of member stars of a cluster is not large(e.g., ΔE(G_(BP)-G_(RP)) < 0.5 mag). It makes the CMDs of 15% clusters clearer(in particular for the region near turnoff) and therefore is helpful for CMD and stellar population studies. Our result suggests that the color excess constraint is more appropriate for clusters with small differential reddening, such as globular clusters or older OCs, and clusters that the distances of member stars cannot be determined accurately.展开更多
In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,ra...In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,radio,X-ray,mid-IR and variability),utilizing the synthesis code STARLIGHT and spectra from the Sloan Digital Sky Survey Data Release 8.Our results show that the variability sample is the oldest,while the mid-IR sample is the youngest,for which the luminosity at 4020?is dominated(>50%)by the young population(t<10~8yr).The light-weighted mean stellar age of the whole sample is in general about 0.7 dex younger than the optical sample studied in Cai et al.We compare the population results between fitting models with and without a power-law(PL)component and find that the neglect of a PL component would lead to an under-and over-estimation by 0.2 and0.1 dex for the light-and mass-weighted mean stellar age,respectively,for our sample of dwarf galaxies,which has a mean fractional contribution of~16%from the AGN.In addition,we obtain further evidence for a possible suppression of star formation in the host galaxy by the central AGN.We also find that there exists an anticorrelation between the extinction-corrected[O III]luminosity and light-weighted mean stellar age,confirming our previous finding that there is a physical connection between AGN and star-forming activities in AGN-host dwarfs.展开更多
Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstell...Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements.展开更多
A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stell...A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stellar classes are identified, for which the correlation coefficients and standard deviation are counted. The theory of the buoyancy terrestial elements is generalized to stellar systems. It was suggested that stars are over-heated due to the shift parameters of the nuclear processes occurring inside the stars, which leads to the synthesis of transuranium elements until the achievement of a critical nuclear mass and star explosion. The heavy transuranium elements sink downward and are concentrated in the stellar depth layers. The physical explanation of the existence of the critical Chandrasekhar star limit has been offered. Based on the spatial analysis of overheated stars, it was suggested that the withdrawal of the stellar reactor from the equilibrium state is a consequence of extragalactic compression inside the galaxy arm due to the arm spirality (not to be confused with the spirality of the galaxy itself).展开更多
The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (ph...The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.展开更多
Extremely low background experiments to measure key nuclear reaction cross sections of astrophysical interest are conducted at the world’s deepest underground laboratory,the Jingping Underground laboratory for Nuclea...Extremely low background experiments to measure key nuclear reaction cross sections of astrophysical interest are conducted at the world’s deepest underground laboratory,the Jingping Underground laboratory for Nuclear Astrophysics(JUNA).High precision measurements provide reliable information to understand nucleosynthetic processes in celestial objects and resolve mysteries on the origin of atomic nuclei discovered in the first generations of Pop.III stars in the universe and meteoritic SiC grains in the solar system.展开更多
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o...In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.展开更多
Theoretical investigations into the deflection angle caused by microlenses offer a direct path to uncovering principles of the cosmological microlensing effect.This work specifically concentrates on the the probabilit...Theoretical investigations into the deflection angle caused by microlenses offer a direct path to uncovering principles of the cosmological microlensing effect.This work specifically concentrates on the the probability density function(PDF)of the light deflection angle induced by microlenses.We have made several significant improvements to the widely used formula from Katz et al.First,we update the coefficient from 3.05 to 1.454,resulting in a better fit between the theoretical PDF and our simulation results.Second,we developed an elegant fitting formula for the PDF that can replace its integral representation within a certain accuracy,which is numerically divergent unless arbitrary upper limits are chosen.Third,to facilitate further theoretical work in this area,we have identified a more suitable Gaussian approximation for the fitting formula.展开更多
We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based pho...We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based photometry from the 3D-HST catalog,as well as associated near-infrared(NIR)Hubble Space Telescope(HST)slitless grism spectroscopy,we evaluate the importance of TP-AGB stars in the SEDs of 177 PSB galaxies by fitting simple stellar populations with different levels of TP-AGB contributions.The grism spectra,despite their low resolution of R~100,enable the detection of molecular features specific to TP-AGB stars and thus improve constraints on their contribution.A majority(~70%)of galaxies in the PSB sample show features indicative of TPAGB stars,while the remainder does not and they are well fit by Bruzual&Charlot TP-AGB light models.Stacked spectra of sources classified to be the best fit by TP-AGB heavy/mild models reveal strong detections of NIR molecular features associated with TP-AGB stars.Additionally,we observe a tentative trend with redshift where more TP-AGB heavy galaxies are observed in the higher redshift PSB galaxy population.Finally,neglecting the contribution of TP-AGB stars can yield an over-prediction of stellar masses measured in the K-band ranging from 0.13-0.23 dex.展开更多
We carry out an optical morphological and infrared spectral study for two young planetary nebulae(PNs)Hen2-158 and Pe 1-1 to understand their complex shapes and dust properties.Hubble Space Telescope optical images re...We carry out an optical morphological and infrared spectral study for two young planetary nebulae(PNs)Hen2-158 and Pe 1-1 to understand their complex shapes and dust properties.Hubble Space Telescope optical images reveal that these nebulae have several bipolar-lobed structures and a faint arc with a clear boundary is located at the northwestern side of Pe 1-1.The presence of this arc-shaped structure suggests that the object interacts with its nearby interstellar medium.Spitzer IRS spectroscopic observations of these young nebulae clearly show prominent unidentified infrared emission features and a weak silicate band in Pe 1-1,indicating that Hen 2-158 is a carbonrich nebula and Pe 1-1 has a mixed chemistry dust environment.Furthermore,we construct two three-dimensional models for these PNs to realize their intrinsic structures.The simulated models of the nebulae suggest that multipolar nebulae may be more numerous than we thought.Our analyses of spectral energy distributions for Hen 2-158 and Pe 1-1 show that they have low luminosities and low stellar effective temperatures,suggesting that these nebulae are young PNs.A possible correlation between typical multipolar young PNs and nested nebulae is also discussed.展开更多
As one of the three major experiments of the fourth-generation Sloan Digital Sky Survey(SDSS-IV),the Mapping Nearby Galaxies at Apatch Point Observatory(MaNGA)survey has obtained high-quality integral field spectrosco...As one of the three major experiments of the fourth-generation Sloan Digital Sky Survey(SDSS-IV),the Mapping Nearby Galaxies at Apatch Point Observatory(MaNGA)survey has obtained high-quality integral field spectroscopy(IFS)with a resolution of 1–2 kpc for104galaxies in the local universe during its six-year operation from July 2014 through August 2020.It is crucial to reliably measure the physical properties of the different components in each spectrum before one can use the data for any scientific study.In the past years we have made lots of efforts to develop a novel technique of full spectral fitting,which estimates a model-independent dust attenuation curve from each spectrum,thus allowing us to break the degeneracy between dust attenuation and stellar population properties when fitting the spectrum with stellar population synthesis models.We have applied our technique to the final data release of Ma NGA,and obtained measurements of stellar population properties and emission line parameters,as well as the kinematics and dust attenuation of both stellar and ionized gas components.In this paper we describe our technique and the content and format of our data products.The whole dataset is publicly available in Science Data Bank with the link https://doi.org/10.57760/sciencedb.j00113.00088.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
文摘This paper generally compares the essential features between tokamaks and stellarators,based on previous review work individually made by authors on several specific topics,such as theories,bulk plasma transport and edge divertor physics,along with some recent results.It aims at summarizing the main results and conclusions with regard to the advantages and disadvantages in these two types of magnetic fusion devices.The comparison includes basic magnetic configurations,magnetohydrodynamic(MHD)instabilities,operational limits and disruptions,neoclassical and turbulent transport,confinement scaling and isotopic effects,plasma rotation,and edge and divertor physics.Finally,a concept of quasi-symmetric stellarators is briefly referred along with a comparison of future application for fusion reactors.
基金The project supported by the National Nature Science Foundation of China (Nos. 19775011 and 10075016) the China Nuclear Industry Science Foundation (No. 94C03033)
文摘Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a cooperation research item co-supported by the National Nature Science Foundation of China and the Max-Planck Institute of Plasma Physics, Garching, Germany. The experiments of the gas jet with hydrogen or deuterium on W7-AS were implemented. The experimental results exhibit the following features such as high fuelling efficiency, stable high-density plasmas and reduction of the recycling fluxes from the vessel wall during injection. These crucial points show that the new fuelling method can be applied to long and stable discharges.
文摘In the project Wendelstein 7-X (W7-X), the popular fieldbus Profibus has been determined as a uniform connection between the central control system and all the subordinate systems. A universal embedded control system has been developed for W7-X power supply controlling. Siemens 80C167CR microcontroller is used as the central control unit of the system. With a user-defined printed circuit board (PCB) several control buses, i.e., Profibus, CAN, IEEE 488, RS485 and RS 232 have been connected to the microcontroller. The corresponding hardware interfaces for the control buses have been designed. A graphic liquid crystal display(LCD) and a user-defined keyboard are used as user interface. The control software will be developed with a C-like language, i.e., C166 for the controller.
文摘The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.
文摘This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.
文摘There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.
文摘Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when balancing stellar categories and their numbers,there is room for improvement in classification accuracy.This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images.A novel neural network,the Stellar Feature Network,is proposed for classifying these images.Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9,encompassing five equal categories(B,A,F,G,K),were used.Comparative experiments validate the effectiveness of the proposed methods and network,achieving significant improvements in classification accuracy.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602902)the National Natural Science Foundation of China(Grant Nos.12073002,12233001,and 8200906879)the China Manned Space Project。
文摘As a major interstellar medium,the atomic neutral hydrogen(H I)plays an important role in the galaxy evolution.It provides the ingredient for star formation,and sensitively traces the internal processes and external perturbations influencing the galaxy.With the beginning of many new radio telescopes and surveys,H_(I)may make a more significant contribution to the understanding of galaxies in the near future.This review discusses the major development of the 21 cm emission-line H_(I)observations and studies in the past few years,including its scaling relations with other galaxy properties,its kinematics and structures,its role in environmental studies,and its constraints on hydrodynamical simulations.The local-Universe H_(I)scaling relations of stellar-massselected samples extend smoothly to 10_(9)M⊙stellar mass,with a tentative evolution to the redshift of∼0.1.The development of measurement techniques enables better estimations of H_(I)non-circular motion,dispersion,and thickness,and new observations revealed extended or extra-planar H_(I)structures,both helpfully constraining the gas accretion,stellar feedback,and star formation processes of galaxy evolution models.H_(I)is very useful for tracing the satellite evolution in dense environments,the studies of which would benefit from ongoing blind H_(I)surveys.Though simulations still cannot fully reproduce H_(I)gas properties,they help to understand the role of possible factors in regulating H_(I)properties.
基金supported by Yunnan Academician Workstation of Wang Jingxiu(202005AF150025)China Manned Space Project(NO.CMS-CSST-2021-A08)Guanghe project(ghfund202302019167)。
文摘Open clusters(OCs) are common in the Milky Way, but most of them remain undiscovered. There are numerous techniques, including some machine-learning algorithms, available for the exploration of OCs. However, each method has its limitations and therefore, different approaches to discovering OCs hold significant values. We develop a comprehensive approach method to automatically explore the data space and identify potential OC candidates with relatively reliable membership determination. This approach combines the techniques of Hierarchical Density-Based Spatial Clustering of Applications with Noise, Gaussian mixture model, and a novel cluster member identification technique, color excess constraint. The new method exhibits efficiency in detecting OCs while ensuring precise determination of cluster memberships. Because the main feature of this technique is to add an extra constraint(EC) for the members of cluster candidates using the homogeneity of color excess,compared to typical blind search codes, it is called Blind Search-Extra Constraint(BSEC) method. It is successfully applied to the Gaia Data Release 3, and 83 new OCs are found, whose color–magnitude diagrams(CMDs) are fitted well to the isochrones. In addition, this study reports 621 new OC candidates with discernible main sequence or red giant branch. It is shown that BSEC technique can discard some false negatives of previous works, which takes about three percentage of known clusters. It shows that as an EC, the color excess(or twocolor) constraint is useful for removing fake cluster member stars from the clusters that are identified from the positions and proper motions of stars, and getting more precise CMDs, when differential reddening of member stars of a cluster is not large(e.g., ΔE(G_(BP)-G_(RP)) < 0.5 mag). It makes the CMDs of 15% clusters clearer(in particular for the region near turnoff) and therefore is helpful for CMD and stellar population studies. Our result suggests that the color excess constraint is more appropriate for clusters with small differential reddening, such as globular clusters or older OCs, and clusters that the distances of member stars cannot be determined accurately.
基金supported by the China Manned Space Project with No.CMSCSST-2021-A06the National Key R&D Program of China with No.2021YFA1600404+7 种基金the National Natural Science Foundation of China(NSFCgrant Nos.12173079 and 11991051)The STARLIGHT project is supported by the Brazilian agencies CNPqCAPESand FAPESP and by the France-Brazil CAPES/Cofecub programFunding for SDSS-III has been provided by the Alfred P.Sloan Foundationthe National Science Foundationthe U.S.Department of Energy Office of Science。
文摘In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,radio,X-ray,mid-IR and variability),utilizing the synthesis code STARLIGHT and spectra from the Sloan Digital Sky Survey Data Release 8.Our results show that the variability sample is the oldest,while the mid-IR sample is the youngest,for which the luminosity at 4020?is dominated(>50%)by the young population(t<10~8yr).The light-weighted mean stellar age of the whole sample is in general about 0.7 dex younger than the optical sample studied in Cai et al.We compare the population results between fitting models with and without a power-law(PL)component and find that the neglect of a PL component would lead to an under-and over-estimation by 0.2 and0.1 dex for the light-and mass-weighted mean stellar age,respectively,for our sample of dwarf galaxies,which has a mean fractional contribution of~16%from the AGN.In addition,we obtain further evidence for a possible suppression of star formation in the host galaxy by the central AGN.We also find that there exists an anticorrelation between the extinction-corrected[O III]luminosity and light-weighted mean stellar age,confirming our previous finding that there is a physical connection between AGN and star-forming activities in AGN-host dwarfs.
文摘Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements.
文摘A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stellar classes are identified, for which the correlation coefficients and standard deviation are counted. The theory of the buoyancy terrestial elements is generalized to stellar systems. It was suggested that stars are over-heated due to the shift parameters of the nuclear processes occurring inside the stars, which leads to the synthesis of transuranium elements until the achievement of a critical nuclear mass and star explosion. The heavy transuranium elements sink downward and are concentrated in the stellar depth layers. The physical explanation of the existence of the critical Chandrasekhar star limit has been offered. Based on the spatial analysis of overheated stars, it was suggested that the withdrawal of the stellar reactor from the equilibrium state is a consequence of extragalactic compression inside the galaxy arm due to the arm spirality (not to be confused with the spirality of the galaxy itself).
文摘The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.
文摘Extremely low background experiments to measure key nuclear reaction cross sections of astrophysical interest are conducted at the world’s deepest underground laboratory,the Jingping Underground laboratory for Nuclear Astrophysics(JUNA).High precision measurements provide reliable information to understand nucleosynthetic processes in celestial objects and resolve mysteries on the origin of atomic nuclei discovered in the first generations of Pop.III stars in the universe and meteoritic SiC grains in the solar system.
文摘In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.U1931210,11673065 and 11273061)funds the NBSDC-DB-10(No.2020000088)the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A12。
文摘Theoretical investigations into the deflection angle caused by microlenses offer a direct path to uncovering principles of the cosmological microlensing effect.This work specifically concentrates on the the probability density function(PDF)of the light deflection angle induced by microlenses.We have made several significant improvements to the widely used formula from Katz et al.First,we update the coefficient from 3.05 to 1.454,resulting in a better fit between the theoretical PDF and our simulation results.Second,we developed an elegant fitting formula for the PDF that can replace its integral representation within a certain accuracy,which is numerically divergent unless arbitrary upper limits are chosen.Third,to facilitate further theoretical work in this area,we have identified a more suitable Gaussian approximation for the fitting formula.
基金based on observation taken by the 3D-HST Treasury Program(GO 12177 and 12328)with NASA/ESA HSToperated by the Association of Universities for Research in Astronomy Inc.,under NASA contract NAS5-26555+1 种基金supported by the National Natural Science Foundation of China(NSFC,Grant No.U1931209)the National Key R&D Program of China(No.2019YFA0405502)。
文摘We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based photometry from the 3D-HST catalog,as well as associated near-infrared(NIR)Hubble Space Telescope(HST)slitless grism spectroscopy,we evaluate the importance of TP-AGB stars in the SEDs of 177 PSB galaxies by fitting simple stellar populations with different levels of TP-AGB contributions.The grism spectra,despite their low resolution of R~100,enable the detection of molecular features specific to TP-AGB stars and thus improve constraints on their contribution.A majority(~70%)of galaxies in the PSB sample show features indicative of TPAGB stars,while the remainder does not and they are well fit by Bruzual&Charlot TP-AGB light models.Stacked spectra of sources classified to be the best fit by TP-AGB heavy/mild models reveal strong detections of NIR molecular features associated with TP-AGB stars.Additionally,we observe a tentative trend with redshift where more TP-AGB heavy galaxies are observed in the higher redshift PSB galaxy population.Finally,neglecting the contribution of TP-AGB stars can yield an over-prediction of stellar masses measured in the K-band ranging from 0.13-0.23 dex.
基金C.-H.H.thanks supports from the Hong Kong Research Grants Council for GRF research support under the grants 17326116 and 17300417。
文摘We carry out an optical morphological and infrared spectral study for two young planetary nebulae(PNs)Hen2-158 and Pe 1-1 to understand their complex shapes and dust properties.Hubble Space Telescope optical images reveal that these nebulae have several bipolar-lobed structures and a faint arc with a clear boundary is located at the northwestern side of Pe 1-1.The presence of this arc-shaped structure suggests that the object interacts with its nearby interstellar medium.Spitzer IRS spectroscopic observations of these young nebulae clearly show prominent unidentified infrared emission features and a weak silicate band in Pe 1-1,indicating that Hen 2-158 is a carbonrich nebula and Pe 1-1 has a mixed chemistry dust environment.Furthermore,we construct two three-dimensional models for these PNs to realize their intrinsic structures.The simulated models of the nebulae suggest that multipolar nebulae may be more numerous than we thought.Our analyses of spectral energy distributions for Hen 2-158 and Pe 1-1 show that they have low luminosities and low stellar effective temperatures,suggesting that these nebulae are young PNs.A possible correlation between typical multipolar young PNs and nested nebulae is also discussed.
基金the National Key R&D Program of China(Grant No.2018YFA0404502)the National Natural Science Foundation of China(Grant Nos.11821303,11733002,11973030,11673015,11733004,11761131004,and 11761141012).
文摘As one of the three major experiments of the fourth-generation Sloan Digital Sky Survey(SDSS-IV),the Mapping Nearby Galaxies at Apatch Point Observatory(MaNGA)survey has obtained high-quality integral field spectroscopy(IFS)with a resolution of 1–2 kpc for104galaxies in the local universe during its six-year operation from July 2014 through August 2020.It is crucial to reliably measure the physical properties of the different components in each spectrum before one can use the data for any scientific study.In the past years we have made lots of efforts to develop a novel technique of full spectral fitting,which estimates a model-independent dust attenuation curve from each spectrum,thus allowing us to break the degeneracy between dust attenuation and stellar population properties when fitting the spectrum with stellar population synthesis models.We have applied our technique to the final data release of Ma NGA,and obtained measurements of stellar population properties and emission line parameters,as well as the kinematics and dust attenuation of both stellar and ionized gas components.In this paper we describe our technique and the content and format of our data products.The whole dataset is publicly available in Science Data Bank with the link https://doi.org/10.57760/sciencedb.j00113.00088.