The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confin...The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.展开更多
Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely ref...Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely reflect the actual corrosion and expansion states. Based on uniform corrosion hypothesis and current models, a corrosion-expansion model for steel in concrete members is presented, which considered the effects of stirrups. Verification result of the model by test data indicates its full significance in structural inspection and life evaluation fields.展开更多
Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength,serviceability,and durability.However,the fatigue shear performance of such beams is unclear.Ther...Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength,serviceability,and durability.However,the fatigue shear performance of such beams is unclear.Therefore,beams with hybrid longitudinal bars and hybrid stirrups were designed,and fatigue shear tests were performed.For specimens that failed by fatigue shear,all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack.For the specimen that failed by the static test after 8 million fatigue cycles,the static capacity after fatigue did not significantly decrease compared with the calculated value.The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase.The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar,and the failure modes were different.Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear,and failed owing to shear.展开更多
The use of Winderen Knee Protection Solution stirrups compared to standard iron stirrups, reveals the following benefits: 1) A reduction of stress or strain time in the order of 14 seconds per minute of activity whils...The use of Winderen Knee Protection Solution stirrups compared to standard iron stirrups, reveals the following benefits: 1) A reduction of stress or strain time in the order of 14 seconds per minute of activity whilst walking and 5 - 7 seconds less whilst trotting or cantering for muscles around the knee. 2) A reduction of stress or strain time in the order of 25 seconds per minute of activity whilst walking and 9 - 10 seconds less whilst trotting or cantering for ligaments around the knee. 3) A significant improvement in the E-score (less time exposed to stress and shock) and ST-score (lower force around the knee) whilst walking. 4) A considerable improvement in rider comfort and feeling of leg stability (self-assessment) compared with the owners current stirrups, whilst riding.展开更多
To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC...To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear.展开更多
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre...Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant...This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.展开更多
The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve speci...The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.展开更多
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens...To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.展开更多
A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a co...A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a corroded steel bar,as well as the deterioration of bond character between corroded reinforcement and concrete. The reliability of the finite element model was evaluated by comparing the results of the finite element calculation with the data from experiments. Based on the finite element analysis results,the influence of corrosion degree,the diameter change of the longitudinal reinforcing bars and the spacing change of stirrups on the flexural stiffness were calculated and analyzed.展开更多
基金Supported by National Natural Science Foundation of China (No. 50878141)
文摘The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.
文摘Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely reflect the actual corrosion and expansion states. Based on uniform corrosion hypothesis and current models, a corrosion-expansion model for steel in concrete members is presented, which considered the effects of stirrups. Verification result of the model by test data indicates its full significance in structural inspection and life evaluation fields.
基金The authors wish to acknowledge the research grants from the National Key Research and Development Program of China(2017YFC0703000)the National Natural Science Foundation of China(Grant No.51678430).
文摘Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength,serviceability,and durability.However,the fatigue shear performance of such beams is unclear.Therefore,beams with hybrid longitudinal bars and hybrid stirrups were designed,and fatigue shear tests were performed.For specimens that failed by fatigue shear,all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack.For the specimen that failed by the static test after 8 million fatigue cycles,the static capacity after fatigue did not significantly decrease compared with the calculated value.The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase.The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar,and the failure modes were different.Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear,and failed owing to shear.
文摘The use of Winderen Knee Protection Solution stirrups compared to standard iron stirrups, reveals the following benefits: 1) A reduction of stress or strain time in the order of 14 seconds per minute of activity whilst walking and 5 - 7 seconds less whilst trotting or cantering for muscles around the knee. 2) A reduction of stress or strain time in the order of 25 seconds per minute of activity whilst walking and 9 - 10 seconds less whilst trotting or cantering for ligaments around the knee. 3) A significant improvement in the E-score (less time exposed to stress and shock) and ST-score (lower force around the knee) whilst walking. 4) A considerable improvement in rider comfort and feeling of leg stability (self-assessment) compared with the owners current stirrups, whilst riding.
文摘To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear.
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No. GC04A609arbin Key Program on Science and Technology Under Grant No. 2004AA9CS187.
文摘Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金National Nature Science Foundation of China Under Grant No. 50621062
文摘This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.
基金the key project of the National Natural Science Foundation of China (No.50438010)
文摘The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.
基金Supported by National Natural Science Foundation of China (No. 50878037)
文摘To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.
基金The National Natural Science Foundation of China (No.50578068)
文摘A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a corroded steel bar,as well as the deterioration of bond character between corroded reinforcement and concrete. The reliability of the finite element model was evaluated by comparing the results of the finite element calculation with the data from experiments. Based on the finite element analysis results,the influence of corrosion degree,the diameter change of the longitudinal reinforcing bars and the spacing change of stirrups on the flexural stiffness were calculated and analyzed.