期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于稀疏逻辑回归和多元融合算法的慢性肾病进展预测模型
被引量:
2
1
作者
杨金山
李智
《计算机与现代化》
2019年第3期13-18,22,共7页
只有一部分慢性肾病(Chronic Kidney Disease, CKD)3期的患者会进展到4期,观察临床数据发现进展和非进展患者部分生理指标有较大的区别。本文首次将基于L_(1/2)范数正则化的逻辑回归(Sparse Logistic Regression, SLR)用于筛选影响CKD...
只有一部分慢性肾病(Chronic Kidney Disease, CKD)3期的患者会进展到4期,观察临床数据发现进展和非进展患者部分生理指标有较大的区别。本文首次将基于L_(1/2)范数正则化的逻辑回归(Sparse Logistic Regression, SLR)用于筛选影响CKD患者进展的关键因素,然后利用SLR、支持向量机(SVM)、提升决策树(AdaBoost Decision Tree, BOOSTDT)建立进展风险预测模型。另外,本文引入堆叠算法Stacking(STKSSD)克服样本量不足使得模型泛化性能不稳定的缺陷。作为对比,本文分别利用神经网络(ANN)、循环神经网络(BLSTM)对数据建模。实验结果表明,当SLR算法选择磷、血清肌酐等11个关键特征时, STKSSD融合模型效果最好,其中测试查全率、查准率、F1值分别为86.97%、92.86%和89.82%。
展开更多
关键词
SLR
Stacking融合算法
SVM
提升决策树
BLSTM
ANN
慢性肾病
进展预测
下载PDF
职称材料
题名
基于稀疏逻辑回归和多元融合算法的慢性肾病进展预测模型
被引量:
2
1
作者
杨金山
李智
机构
四川大学电子信息学院
出处
《计算机与现代化》
2019年第3期13-18,22,共7页
文摘
只有一部分慢性肾病(Chronic Kidney Disease, CKD)3期的患者会进展到4期,观察临床数据发现进展和非进展患者部分生理指标有较大的区别。本文首次将基于L_(1/2)范数正则化的逻辑回归(Sparse Logistic Regression, SLR)用于筛选影响CKD患者进展的关键因素,然后利用SLR、支持向量机(SVM)、提升决策树(AdaBoost Decision Tree, BOOSTDT)建立进展风险预测模型。另外,本文引入堆叠算法Stacking(STKSSD)克服样本量不足使得模型泛化性能不稳定的缺陷。作为对比,本文分别利用神经网络(ANN)、循环神经网络(BLSTM)对数据建模。实验结果表明,当SLR算法选择磷、血清肌酐等11个关键特征时, STKSSD融合模型效果最好,其中测试查全率、查准率、F1值分别为86.97%、92.86%和89.82%。
关键词
SLR
Stacking融合算法
SVM
提升决策树
BLSTM
ANN
慢性肾病
进展预测
Keywords
SLR
stkssd
SVM
BOOSTDT
BLSTM
ANN
chronic kidney disease
progression prediction
分类号
R692 [医药卫生—泌尿科学]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于稀疏逻辑回归和多元融合算法的慢性肾病进展预测模型
杨金山
李智
《计算机与现代化》
2019
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部