供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供...供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。展开更多
This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to me...This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to measure the shape and deformation of the skin at the biceps brachii of a volunteer in vivo during arm wrestling.We observed the banding phenomenon of arm skin strain during muscle contraction and developed a model to evaluate the moment provided by the biceps brachii.According to this model,the strain field of the area of interest on the skin was measured,and the forearm angles most favorable and unfavorable to the work of the biceps brachii were analyzed.This study demonstrates the considerable potential of applying DIC and its extension method to the in vivo measurement of human skin and facilitates the use of the in vivo measurement of skin deformation in various sports in the future.展开更多
传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序...传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。展开更多
为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosti...为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。展开更多
Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not...Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.To address these challenges,this paper introduces a novel epipolar line window attention stereo image super-resolution network(EWASSR).For detail feature restoration,we design a feature extractor based on Transformer and convolutional neural network(CNN),which consists of(shifted)window-based self-attention((S)W-MSA)and feature distillation and enhancement blocks(FDEB).This combination effectively solves the problem of global image perception and local feature attention and captures more discriminative high-frequency features of the image.Furthermore,to address the problem of offset of complementary pixels in stereo images,we propose an epipolar line window attention(EWA)mechanism,which divides windows along the epipolar direction to promote efficient matching of shifted pixels,even in pixel smooth areas.More accurate pixel matching can be achieved using adjacent pixels in the window as a reference.Extensive experiments demonstrate that our EWASSR can reconstruct more realistic detailed features.Comparative quantitative results show that in the experimental results of our EWASSR on the Middlebury and Flickr1024 data sets for 2×SR,compared with the recent network,the Peak signal-to-noise ratio(PSNR)increased by 0.37 dB and 0.34 dB,respectively.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
文摘供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。
基金This study was supported by the National Natural Science Foun-dation of China(NSFC)(No.11902074).
文摘This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to measure the shape and deformation of the skin at the biceps brachii of a volunteer in vivo during arm wrestling.We observed the banding phenomenon of arm skin strain during muscle contraction and developed a model to evaluate the moment provided by the biceps brachii.According to this model,the strain field of the area of interest on the skin was measured,and the forearm angles most favorable and unfavorable to the work of the biceps brachii were analyzed.This study demonstrates the considerable potential of applying DIC and its extension method to the in vivo measurement of human skin and facilitates the use of the in vivo measurement of skin deformation in various sports in the future.
文摘传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。
文摘为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。
基金This work was supported by Sichuan Science and Technology Program(2023YFG0262).
文摘Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.To address these challenges,this paper introduces a novel epipolar line window attention stereo image super-resolution network(EWASSR).For detail feature restoration,we design a feature extractor based on Transformer and convolutional neural network(CNN),which consists of(shifted)window-based self-attention((S)W-MSA)and feature distillation and enhancement blocks(FDEB).This combination effectively solves the problem of global image perception and local feature attention and captures more discriminative high-frequency features of the image.Furthermore,to address the problem of offset of complementary pixels in stereo images,we propose an epipolar line window attention(EWA)mechanism,which divides windows along the epipolar direction to promote efficient matching of shifted pixels,even in pixel smooth areas.More accurate pixel matching can be achieved using adjacent pixels in the window as a reference.Extensive experiments demonstrate that our EWASSR can reconstruct more realistic detailed features.Comparative quantitative results show that in the experimental results of our EWASSR on the Middlebury and Flickr1024 data sets for 2×SR,compared with the recent network,the Peak signal-to-noise ratio(PSNR)increased by 0.37 dB and 0.34 dB,respectively.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.