供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供...供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。展开更多
传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序...传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。展开更多
为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosti...为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。展开更多
文摘供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。
文摘传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。
文摘为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。