The higher order fluctuations in the SU(1,1) generalized coherent states are discussed. The definition of higher order SU(1,1) squeezing is introduced in terms of higher order uncertainty relation. For two poss...The higher order fluctuations in the SU(1,1) generalized coherent states are discussed. The definition of higher order SU(1,1) squeezing is introduced in terms of higher order uncertainty relation. For two possible bosonic realizations of SU(1,1) Lie algebra, the second , fourth and sixth order SU(1,1) squeezing are examined in detail. It is shown that the SU(1,1) generalized coherent states can be squeezed to not only second order, but also fourth and sixth order. Hence, it follows that the higher order squeezing will occur for the fluctuations of the square of amplitude in squeezed vacuum. SU(1,1) higher order squeezing is a kind of non classical property which is independent of second order squeezing.展开更多
Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the ...Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the nonlinearity function , their statistical properties are studied.展开更多
In a system with a moving V-type three-level atom interacting with the SU(1,1)-related coherent fields, we investigate the entanglement between the moving three-level atom and the SU(1,1)-related coherent fields b...In a system with a moving V-type three-level atom interacting with the SU(1,1)-related coherent fields, we investigate the entanglement between the moving three-level atom and the SU(1,1)-related coherent fields by using the quantum-reduced entropy, and that between the SU(1,1)-related coherent fields by using the quantum relative entropy of entanglement. It is shown that the two kinds of entanglement are dependent on the atomic motion and exhibit the periodic evolution with a period of 2π/p. The maximal atom-field qutrit entanglement state can be prepared, and the entanglement preservation of the SU(1,1)-related coherent fields can be realized in the interacting process via the appropriate selection of system parameters and interaction time.展开更多
For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is inves...For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is investigated. It is found that suitable intensity-dependent coupling can enhance the entanglement transfer and make the atomic entanglement evolve periodically especially for the initially mixed atomic states. For SCS, the entanglement between the two modes is strengthened with the increase of the photon number difference (PND) between the two modes of the fields. When PND is odd, the entanglement between the atoms is less than that when PND is even.展开更多
文摘The higher order fluctuations in the SU(1,1) generalized coherent states are discussed. The definition of higher order SU(1,1) squeezing is introduced in terms of higher order uncertainty relation. For two possible bosonic realizations of SU(1,1) Lie algebra, the second , fourth and sixth order SU(1,1) squeezing are examined in detail. It is shown that the SU(1,1) generalized coherent states can be squeezed to not only second order, but also fourth and sixth order. Hence, it follows that the higher order squeezing will occur for the fluctuations of the square of amplitude in squeezed vacuum. SU(1,1) higher order squeezing is a kind of non classical property which is independent of second order squeezing.
文摘Using non-Hermitian realizations of SU(1,1) Lie algebra in terms of an f-oscillator, we generalize the notion of nonlinear coherent states to the single-mode and two-mode nonlinear SU(1,1) coherent states. Taking the nonlinearity function , their statistical properties are studied.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025) and by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ4003).
文摘In a system with a moving V-type three-level atom interacting with the SU(1,1)-related coherent fields, we investigate the entanglement between the moving three-level atom and the SU(1,1)-related coherent fields by using the quantum-reduced entropy, and that between the SU(1,1)-related coherent fields by using the quantum relative entropy of entanglement. It is shown that the two kinds of entanglement are dependent on the atomic motion and exhibit the periodic evolution with a period of 2π/p. The maximal atom-field qutrit entanglement state can be prepared, and the entanglement preservation of the SU(1,1)-related coherent fields can be realized in the interacting process via the appropriate selection of system parameters and interaction time.
基金The project supported by National Natural Science Foundation of China under Grant No.20376054
文摘For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is investigated. It is found that suitable intensity-dependent coupling can enhance the entanglement transfer and make the atomic entanglement evolve periodically especially for the initially mixed atomic states. For SCS, the entanglement between the two modes is strengthened with the increase of the photon number difference (PND) between the two modes of the fields. When PND is odd, the entanglement between the atoms is less than that when PND is even.