期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Trace and rare earth element geochemistry of the black and grey shales of the Calabar Flank, Southeastern Nigeria: constraints on the depositional environment and the degree of metal enrichment 被引量:1
1
作者 Christopher Iorfa Adamu Benjamin Odey Omang +2 位作者 Oluwaseye Peter Oyetade Otu Johnson Therese Ntonzi Nganje 《Acta Geochimica》 EI CAS CSCD 2021年第3期312-324,共13页
This study focuses on the trace and rare earth elements(REE)geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enr... This study focuses on the trace and rare earth elements(REE)geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enrichment.The shale samples were analyzed using inductively coupled plasma mass spectrometry.The results indicated that the mean concentrations of K,Na,and Fe in Nkporo and Ekenkpon Shales are 1.45,0.4,and 4.17 wt%,and 1.11,0.44,and 5.42 wt%;respectively.The Nkporo Shale is enriched with the following trace elements;P>Mn>Sr>Ba>Zn>Ce>Rb>Zr>V>Cr>Ni and depleted in the following trace elements;Ta>Ge>Sb>Bi>Cd>Ag>Te>In>Hg.While the Ekenkpon Shale is enriched with the following trace elements;P>Mn>Ba>Sr>V>Ce>Zr>Rb>Cr>Zn>Ni and depleted in;Sb>Ge>Bi>Ag>Ce>Te>In>Hg.The concentration of redox-sensitive elements such as V,Ni,Mo,U,Cu,Cr,Re,Cd,Sb,Ti,Mn,and their ratio V/Mo and U/Mo in the black and grey shale samples show different patterns.The REE obtained from the Nkporo and Ekenkpon Shales were PAAS normalized.The Nkporo Shale showed a slightly flat light rare-earth element(LREE),middle rare-earth element(MREE),and heavy rare earth element(HREE)pattern enrichment.Ce/Ce*ranges from 0.95 to 1.09 in Nkporo Shale and 0.67 to 1.40 in Ekenkpon Shale.The Ekenkpon Shale showed a slight LREE,MREE enrichment,and depleted HREE patterns.The Mn contents and U/Mo ratio in Nkporo and Ekenkpon Shales suggests a poor oxygen transitional environment.The V/Mo and V/(V+Ni)ratios indicated that the Nkporo shales were deposited in an anoxic to suboxic conditions and Ekenkpon shales were also deposited under an anoxic to suboxic conditions.The V/Ni ratio indicated that the organic matter in the Nkporo shale is terrigenous while that of the Ekenkpon shales are both terrigenous and marine in origin. 展开更多
关键词 Rare-earth elements(REE) Trace elements Calabar Flank suboxic ANOXIC
下载PDF
Role of Metallurgy in the Localized Corrosion of Carbon Steel
2
作者 Recep Avci Bret H. Davis +3 位作者 Nathaniel Rieders Kilean Lucas Manjula Nandasiri Dave Mogk 《Journal of Minerals and Materials Characterization and Engineering》 2018年第6期618-646,共29页
Localized residual strain develops within the metallurgical texture of 1018 carbon steel from metallurgical processes, such as fabrication, annealing, and shaping. This residual strain results in accelerated localized... Localized residual strain develops within the metallurgical texture of 1018 carbon steel from metallurgical processes, such as fabrication, annealing, and shaping. This residual strain results in accelerated localized pitting due to the formation of anodic sites at these locations. Once initiated, micron-sized corrosion pits can coalesce to form sites of potential catastrophic failure. In this contribution, we focus on the localized biocorrosion which initiates and grows in areas of localized strain such as the interfaces between manganese sulfide (MnS) inclusions and ferrite grains in the steel, at grain boundaries between ferrite grains with different crystallographic orientations and at pearlite grains (intergrown cementite (Fe3C) and ferrite), which are readily found in 1018 carbon steel. Here we hypothesize and show experimentally that accelerated biocorrosion in 1018 carbon steel finds its roots in the electrochemical potential difference (micro galvanic cells) generated between the unstrained ferrite iron (α - Fe) and the lattice defects, dislocations and mismatches found at interfaces formed between α - Fe?and secondary phases i.e. MnS inclusions, cementite lamellar structures and grain boundaries distributed throughout the 3D network of the carbon steel. This hypothesis is supported by results from multiple micro- and nanoscale imaging and analytical methods obtained from field emission scanning electron microscopy, energy dispersive spectroscopy, electron backscattered diffraction and Auger nanoprobe electron spectroscopy. The morphology and composition of grains in the steel coupons were characterized before and after exposure to suboxic and sulfidogenic environments dominated by aerobic and anaerobic marine organisms. Corrosion processes are demonstrated to initiate in localized areas of high residual strain. 展开更多
关键词 METALLURGY Strain Dislocations Carbon Steel Micro Galvanic Cell suboxic Sulfidogenic MNS PEARLITE CEMENTITE Grain Boundary
下载PDF
Contrasting Depositional Environment of Iron Formation at Endengue Area, NW Congo Craton, Southern Cameroon: New Insights from Trace and Rare Earth Elements Geochemistry
3
作者 Robinson Tchatchueng Timoléon Ngnotué +3 位作者 Evine Laure Tanko Njiosseu Sylvestre Ganno Hervé Wabo Jean Paul Nzenti 《International Journal of Geosciences》 2021年第3期280-306,共27页
The Endengue Banded Iron Formation (BIF) is located in the northwestern edge of the Congo craton in Cameroon. Here<span style="font-family:Verdana;">,</span><span style="font-family:Verda... The Endengue Banded Iron Formation (BIF) is located in the northwestern edge of the Congo craton in Cameroon. Here<span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> we report geochemical data of trace and rare earth elements (REE) of the Endengue BIF samples from the Archean Ntem complex and investigate their environmental setting. Two types of BIF occur at Endengue area, both containing minimal contamination from terrestrial material. Total REE (</span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE) contents in the Type 1 BIF are extremely low, ranging from 0.34 to 1.83 ppm, similarly to pure chemical sediments while Type 2 BIF displays</span><span style="font-family:;" "=""> </span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE contents ranging from 2.98 to 24.26 ppm. The PAAS-normalized REE</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">+</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Y patterns of the two BIF types display LREE enrichment relative to HREE and weak positive Eu anomaly, most likely suggesting that the source of iron and siliceous of the Endengue BIFs is mainly from the contribution of low-temperature hydrothermal alteration of the crust. Type 1 BIF shows very low Nd content (<1 ppm) with positive correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and positive Ce anomalies which suggests suboxic or anoxic seawater similar to the depositional environment of Elom BIF in Archean Ntem complex. In contrast, Type 2 BIF displays low to moderate Nd contents (1 and 100 ppm with the exception of sample LBR65) with negative correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and negative Ce anomalies. These features indicate precipatation of Type 2 BIF from oxic iron-rich solution that changed to oxidized surface by rapid precipitation of the hydrothermal Fe. The Endengue BIFs were deposited in the continental margin ocean in presence of low-temperature hydrothermal fluids mixed with seawater, similar to Paleoproterozoic Kpwa</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Atog Boga BIFs within the Nyong group and other Paleoproterozoic Superior</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">type BIFs worldwide.</span> 展开更多
关键词 Endengue BIFs suboxic or Anoxic Oxic Depositional Environment Ntem Complex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部