Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import...Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection ...Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of ...Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of field monitoring,calcula-tion,and simulation were introduced.It summarized and analyzed the main applications,flaws and solutions,and improve-ments of these methods.Based on this analysis,the future developing directions of subsidence data acquisition methods were prospected and suggested.The subsidence monitoring methods have evolved from conventional ground monitoring to combined methods involving ground-based,space-based,and air-based measurements.While the conventional methods are mature in technology and reliable in accuracy,emerging remote sensing technologies have obvious advantages in terms of reducing field workload and increasing data coverage.However,these remote sensing methods require further technological development to be more suitable for monitoring mining subsidence.The existing subsidence calculation methods have been applied to various geological and mining conditions,and many improvements have already been made.In the future,more attention should be paid to unifying the studies of calculation methods and mechanical principles.The simulation methods are quite dependent on the similarity of the model to the site conditions and are generally used as an auxiliary data source for subsidence studies.The cross-disciplinary studies between subsidence data acquisition methods and other technologies should be given serious consideration,as they can be expected to lead to breakthroughs in areas such as theories,devices,software,and other aspects.展开更多
The research and achievements made on seismic subsidence of loess,obtained over the past30 years,were reviewed.Seismic Subsidence of Loess(SSL)has been verified by microstructure characteristics,dynamic triaxial exper...The research and achievements made on seismic subsidence of loess,obtained over the past30 years,were reviewed.Seismic Subsidence of Loess(SSL)has been verified by microstructure characteristics,dynamic triaxial experiments,and in-situ explosion tests,and has become an important subject in the field of seismic loess engineering research.While,the research is still in the stage of theoretical study of saturated soil,and there are no representative cases of seismic subsidence of loess in historical earthquakes.It is difficult to express structure characteristics using microstructure morphology.While,soil mechanics are available methods for this.Seismic subsidence judgment is absolute in some certain value ranges for several parameters.Therefore,probabilistic judgment should be developed.The seismic subsidence ratio is estimated mostly by empirical formulas or semiempirical and semi-theoretical formulas,which are based on laboratory data.These formulas are not established on the basis of physical process and mechanics of seismic subsidence,and this leads to more variables,complicated computation,and poor practicability.To solve these problems,we need to distinguish the main factors and corresponding variables,to establish a mechanics model for seismic subsidence estimation,and to characterize its physio-mechanical process.The key of anti-seismic subsidence treatment is to reduce the seismic subsidence property of soils,and to lower the interaction between the soil body and underground structures.展开更多
Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that a...Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the ch...Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.展开更多
The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebo...The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebound in some areas. To investigate the spatiotemporal evolution characteristics of land subsidence in the eastern plain of Beijing following the SNWDP, this study employs Ascending (ASC) and Descending (DES) InSAR data combined with a Strain Model (SM) to obtain a Three-Dimensional (3-D) deformation field from 2016 to 2018. Through analysis of the 3-D deformation characteristics and spatiotemporal evolution of land subsidence in this region from 2016 to 2018, the results reveal a shift in the distribution of subsiding areas after the South-to-North Water Diversion, with a marked decrease in subsidence rates in certain areas. The maximum subsidence rate in the Beijing area has decreased to 110 mm/yr, accompanied by horizontal deformation at a rate of 12 mm/yr. Additionally, by examining the spatial relationship between major active faults and subsidence deformation in this region, the study further elucidates the influence of fault activity on the spatial distribution of subsidence deformation.展开更多
Unlike conventional room and pillar underground coal mining,where subsidence is designed to be prevented,subsidence is a planned outcome of other methodologies.These include high extraction retreat,where the roof supp...Unlike conventional room and pillar underground coal mining,where subsidence is designed to be prevented,subsidence is a planned outcome of other methodologies.These include high extraction retreat,where the roof supporting pillars are systematically removed,and longwall mining,which employs a machine that mines a continuous strip of coal,thus leaving no roof supports.Both types result in the surface dropping -70% of the mined-out thickness.In Illinois there was a concern that farm land thus subsided would be lost to productive agriculture.Consequently,the possibility that planned mine subsidence would be banned in Illinois lead to the creation of the Illinois Mine Subsidence Research Program in 1985 to investigate agricultural impacts of planned mine subsidence and the possibility of mitigating its impact.Its findings established that subsidence was not as detrimental as feared and that the impacts could be mitigated.The project was a successful collaboration of state and federal governments and local Universities.Similarly,in Queensland,longwall mining is opposed by some in the farming community.In response,Bandanna Energy,the company planning the mining,organized the Agricultural Coexistence Research Committee to oversee research into the mitigation of longwall mining impacts.Although the soils,climate,and regulatory regimes are different,concerns of the local communities are similar.展开更多
The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Int...The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.展开更多
Coastal subsidence monitoring typically employs Global Navigation Satellite System(GNSS)positioning technology.This method provides information only about subsidence below the station base.Sediments in coastal areas t...Coastal subsidence monitoring typically employs Global Navigation Satellite System(GNSS)positioning technology.This method provides information only about subsidence below the station base.Sediments in coastal areas tend to accumulate quickly,and subsidence can change significantly due to compaction and alluvium.Therefore,monitoring subsidence above the base is essential to obtain overall coastal subsidence.A new technology called GNSS-Interferometric Reflectometry(GNSS-IR)has been recently developed,which can utilize multipath effects to monitor reflector height.Since the base of the GNSS station is deep and the base length remains constant,the height changes measured by the GNSS-IR technology can reflect subsidence above the base.Accordingly,this paper employs GNSS-IR technology to measure subsidence changes above the base.Additionally,GNSS positioning technology is used to obtain subsidence changes below the base,and the overall subsidence change is then calculated using both GNSS-IR and GNSS positioning technology.The Mississippi River Delta,known for its significant sediment thickness,was selected as the study area,and data from FSHS,GRIS,and MSIN stations was analyzed.The results demonstrate that GNSS-IR can be used to measure the subsidence rate above the base,and the corrected overall subsidence rate is equivalent to the relative sea level rise rate.展开更多
Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining ...Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).展开更多
The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRT...The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.展开更多
In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stati...In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.展开更多
Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests o...Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.展开更多
Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The...Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The monitoring data show that land subsidence was serious and two main subsidence cones were obviously formed in the region. One emerged at Hujiayuan, with the maximum rate reaching 60 ram/a, and the influence region enlarged prominently from 2005 to 2010. The other one occurred at Kaifaqu, which became obvious only after 2005, and it showed a decreasing tendency with time. To analyze the causes of ground settlement, a correlation between groundwater withdrawal and land subsidence was firstly made. The results confirmed that over-exploitation of groundwater was the major cause for the severe settlement in Hujiayuan. Meanwhile, the subsidence of Kaifaqu was also related to groundwater withdrawal before 2005. However, the relationship became unconspicuous after 2005. To find the cause of this abnormity, a three-dimensional finite element numerical model, coupled with groundwater flow and subsidence, was built. The simulation results indicate that the subsidence induced by high-rise buildings is serious, but the affected range is limited and it also shows a decreasing trend with time, corresponding to the subsidence characteristics at Kaifaqu. Therefore, more attention should be paid to this hazard induced by engineering construction besides groundwater withdrawal, as more high-rise buildings are under construction in Tanggu.展开更多
Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great ...Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great importance. The numerical software ANSYS was used in this study to simulate mining processes under two special geological conditions: (1) thick unconsolidated soil layer and thin bedrock; (2) thin soil layer and thick bedrock. The rules for ground movement and deformation for different soil layer to bedrock ratios were obtained. On the basis of these rules, a prediction parameter modified model of the influence function was proposed, which is suitable for different values of unconsolidated soil layer thickness. The prediction results were verified using two sets of typical field data.展开更多
基金Supported by the National Science and Technology Major Project(2017ZX05001)CNPC Science and Technology Project(2021DJ22).
文摘Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
基金Project(2012BAB13B03)supported by the National Scientific and Technical Supporting Programs Funded of ChinaProject(41104011)supported by the National Natural Science Foundation of China+1 种基金Project(2013QNB07)supported by the Natural Science Funds for Young Scholar of China University of Mining and TechnologyProject(2012LWB32)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金supported by the Natural Science Foundation of Shanxi Province,China (201901D111074,20210302124437).
文摘Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of field monitoring,calcula-tion,and simulation were introduced.It summarized and analyzed the main applications,flaws and solutions,and improve-ments of these methods.Based on this analysis,the future developing directions of subsidence data acquisition methods were prospected and suggested.The subsidence monitoring methods have evolved from conventional ground monitoring to combined methods involving ground-based,space-based,and air-based measurements.While the conventional methods are mature in technology and reliable in accuracy,emerging remote sensing technologies have obvious advantages in terms of reducing field workload and increasing data coverage.However,these remote sensing methods require further technological development to be more suitable for monitoring mining subsidence.The existing subsidence calculation methods have been applied to various geological and mining conditions,and many improvements have already been made.In the future,more attention should be paid to unifying the studies of calculation methods and mechanical principles.The simulation methods are quite dependent on the similarity of the model to the site conditions and are generally used as an auxiliary data source for subsidence studies.The cross-disciplinary studies between subsidence data acquisition methods and other technologies should be given serious consideration,as they can be expected to lead to breakthroughs in areas such as theories,devices,software,and other aspects.
基金sponsored by the Basic Research Foundation of Institute of Earthquake Science,China Earthquake Administration(No.2011IESLZ03)
文摘The research and achievements made on seismic subsidence of loess,obtained over the past30 years,were reviewed.Seismic Subsidence of Loess(SSL)has been verified by microstructure characteristics,dynamic triaxial experiments,and in-situ explosion tests,and has become an important subject in the field of seismic loess engineering research.While,the research is still in the stage of theoretical study of saturated soil,and there are no representative cases of seismic subsidence of loess in historical earthquakes.It is difficult to express structure characteristics using microstructure morphology.While,soil mechanics are available methods for this.Seismic subsidence judgment is absolute in some certain value ranges for several parameters.Therefore,probabilistic judgment should be developed.The seismic subsidence ratio is estimated mostly by empirical formulas or semiempirical and semi-theoretical formulas,which are based on laboratory data.These formulas are not established on the basis of physical process and mechanics of seismic subsidence,and this leads to more variables,complicated computation,and poor practicability.To solve these problems,we need to distinguish the main factors and corresponding variables,to establish a mechanics model for seismic subsidence estimation,and to characterize its physio-mechanical process.The key of anti-seismic subsidence treatment is to reduce the seismic subsidence property of soils,and to lower the interaction between the soil body and underground structures.
文摘Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.
基金supported by Geological Research Project of the Construction Management Bureau of the Middle Route of the South to North Water Diversion Project(ZXJ/HN/YW/GC-2020037)。
文摘Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.
文摘The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebound in some areas. To investigate the spatiotemporal evolution characteristics of land subsidence in the eastern plain of Beijing following the SNWDP, this study employs Ascending (ASC) and Descending (DES) InSAR data combined with a Strain Model (SM) to obtain a Three-Dimensional (3-D) deformation field from 2016 to 2018. Through analysis of the 3-D deformation characteristics and spatiotemporal evolution of land subsidence in this region from 2016 to 2018, the results reveal a shift in the distribution of subsiding areas after the South-to-North Water Diversion, with a marked decrease in subsidence rates in certain areas. The maximum subsidence rate in the Beijing area has decreased to 110 mm/yr, accompanied by horizontal deformation at a rate of 12 mm/yr. Additionally, by examining the spatial relationship between major active faults and subsidence deformation in this region, the study further elucidates the influence of fault activity on the spatial distribution of subsidence deformation.
文摘Unlike conventional room and pillar underground coal mining,where subsidence is designed to be prevented,subsidence is a planned outcome of other methodologies.These include high extraction retreat,where the roof supporting pillars are systematically removed,and longwall mining,which employs a machine that mines a continuous strip of coal,thus leaving no roof supports.Both types result in the surface dropping -70% of the mined-out thickness.In Illinois there was a concern that farm land thus subsided would be lost to productive agriculture.Consequently,the possibility that planned mine subsidence would be banned in Illinois lead to the creation of the Illinois Mine Subsidence Research Program in 1985 to investigate agricultural impacts of planned mine subsidence and the possibility of mitigating its impact.Its findings established that subsidence was not as detrimental as feared and that the impacts could be mitigated.The project was a successful collaboration of state and federal governments and local Universities.Similarly,in Queensland,longwall mining is opposed by some in the farming community.In response,Bandanna Energy,the company planning the mining,organized the Agricultural Coexistence Research Committee to oversee research into the mitigation of longwall mining impacts.Although the soils,climate,and regulatory regimes are different,concerns of the local communities are similar.
文摘The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.
基金Fundamental Research Funds for the Central Universities(No.B200202015)National Natural Science Foundation of China(No.42004018)Natural Science Foundation of Jiangsu Province(No.BK20190496)。
文摘Coastal subsidence monitoring typically employs Global Navigation Satellite System(GNSS)positioning technology.This method provides information only about subsidence below the station base.Sediments in coastal areas tend to accumulate quickly,and subsidence can change significantly due to compaction and alluvium.Therefore,monitoring subsidence above the base is essential to obtain overall coastal subsidence.A new technology called GNSS-Interferometric Reflectometry(GNSS-IR)has been recently developed,which can utilize multipath effects to monitor reflector height.Since the base of the GNSS station is deep and the base length remains constant,the height changes measured by the GNSS-IR technology can reflect subsidence above the base.Accordingly,this paper employs GNSS-IR technology to measure subsidence changes above the base.Additionally,GNSS positioning technology is used to obtain subsidence changes below the base,and the overall subsidence change is then calculated using both GNSS-IR and GNSS positioning technology.The Mississippi River Delta,known for its significant sediment thickness,was selected as the study area,and data from FSHS,GRIS,and MSIN stations was analyzed.The results demonstrate that GNSS-IR can be used to measure the subsidence rate above the base,and the corrected overall subsidence rate is equivalent to the relative sea level rise rate.
基金Project (BK20130174) supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation) Project (1101109C) supported by Jiangsu Planned Projects for Postdoctoral Research Funds,China+1 种基金Project (201325) supported by the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).
基金Project(51174191)supported by the National Natural Science Foundation of ChinaProject(2013CB227904)supported by the National Basic Research Program of ChinaProject(2012QNB09)supported by Fundamental Research Funds for the Central Universities,China
文摘The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.
基金Projects(51174206,41204011)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPDSA1102),China
文摘In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.
文摘Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.
基金supported by the State Key Development Program for Basic Research of China(Grant No2010CB428803)the Knowledge Innovation Projects of the Chinese Academy of Science(Grant No KZCX2-YW-Q03-02)
文摘Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The monitoring data show that land subsidence was serious and two main subsidence cones were obviously formed in the region. One emerged at Hujiayuan, with the maximum rate reaching 60 ram/a, and the influence region enlarged prominently from 2005 to 2010. The other one occurred at Kaifaqu, which became obvious only after 2005, and it showed a decreasing tendency with time. To analyze the causes of ground settlement, a correlation between groundwater withdrawal and land subsidence was firstly made. The results confirmed that over-exploitation of groundwater was the major cause for the severe settlement in Hujiayuan. Meanwhile, the subsidence of Kaifaqu was also related to groundwater withdrawal before 2005. However, the relationship became unconspicuous after 2005. To find the cause of this abnormity, a three-dimensional finite element numerical model, coupled with groundwater flow and subsidence, was built. The simulation results indicate that the subsidence induced by high-rise buildings is serious, but the affected range is limited and it also shows a decreasing trend with time, corresponding to the subsidence characteristics at Kaifaqu. Therefore, more attention should be paid to this hazard induced by engineering construction besides groundwater withdrawal, as more high-rise buildings are under construction in Tanggu.
文摘Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great importance. The numerical software ANSYS was used in this study to simulate mining processes under two special geological conditions: (1) thick unconsolidated soil layer and thin bedrock; (2) thin soil layer and thick bedrock. The rules for ground movement and deformation for different soil layer to bedrock ratios were obtained. On the basis of these rules, a prediction parameter modified model of the influence function was proposed, which is suitable for different values of unconsolidated soil layer thickness. The prediction results were verified using two sets of typical field data.