期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Depositional and Diagenetic Controls on Sandstone Reservoirs with Low Porosity and Low Permeability in the Eastern Sulige Gas Field, China 被引量:16
1
作者 YANG Renchao FAN Aiping +2 位作者 A.J.van LOON HAN Zuozhen WANG Xiuping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1513-1534,共22页
In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary faci... In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a specific sedimentary facies because it can be formed in different sedimentary facies, but it indicates high hydrodynamic conditions and presence of favorable reservoirs. 展开更多
关键词 Ordos Basin sulige Gas Field sandstone reservoir sedimentary facies diagenesis diagenetic facies
下载PDF
Diagenesis and Their Succession of Gas-bearing and Non-gas-bearing Reservoirs in the Sulige Gas Field of Ordos Basin,China 被引量:9
2
作者 ZHU Xiaomin LIU Chenlin ZHONG Dakang HAN Xuefang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第6期1202-1213,共12页
Comparisons have been made among lithology, diagenesis, and reservoir characteristics of gas-bearing and non-gas-bearing ones in the Sulige gas field of the Ordos Basin based on the laboratory analysis of thin section... Comparisons have been made among lithology, diagenesis, and reservoir characteristics of gas-bearing and non-gas-bearing ones in the Sulige gas field of the Ordos Basin based on the laboratory analysis of thin sections, scanning electron microscope, and liquid inclusion of the reservoirs. The reservoirs of the Sulige gas field are now in the middle stage of diagenesis and have undergone compaction, cementation and dissolution. The secondary pore of the reservoir originated from the dissolution of the feldspar and tuff because of the organic acid action from the source rocks during the diagenetic middle stage. Gas-bearing reservoirs are common in soluble pore diagenetic facies of coarse detritus quartzose sandstone, whereas non-gas-bearing ones are common in tense compaction diagenetic facies of mud-bearing medium-fine detritus quartzose sandstone and residual intergranular pore diagenetic facies of mud-bearing medium-coarse detritus quartzose sandstone. The secondary pore is developed in gas-bearing reservoirs of the Sulige gas-field as the medium-coarse grain reservoirs formed in a powerful sedimentary environment and experienced strong dissolution. However, the sediments of fine grain size form the non-gas-bearing reservoirs because of less residual primary pore and secondary pore. 展开更多
关键词 pore evolution DIAGENESIS RESERVOIR sulige gas field Ordos basin
下载PDF
A Volumetric Model for Evaluating Tight Sandstone Gas Reserves in the Permian Sulige Gas Field,Ordos Basin,Central China 被引量:5
3
作者 CUI Mingming FAN Aiping +3 位作者 WANG Zongxiu GAO Wanli LI Jinbu LI Yijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第2期386-399,共14页
To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permi... To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas. 展开更多
关键词 tight sandstone reservoir volumetric GAS reserve PERMIAN sulige GAS field ORDOS Basin
下载PDF
Controlling Factors Affecting Pressure Differential Development of the Upper Paleozoic Gas Reservoir in the Sulige and Yulin Area of the Ordos Basin
4
作者 Hao Xu~1,Junfeng Zhang~2,Chengzao Jia~3,Dazhen Tang~1,Ming Li~3,Wenzhong Zhang~1 1.Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism,Ministry of Education,China University of Geosciences(Beijing),Beijing 100083,China. 2.PetroChina Exploration and Production Company,Beijing 100724,China 3.Research Institute of Petroleum Exploration & Development,Beijing 100083,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期126-127,共2页
The origin and distribution of Upper Paleozoic reservoirs pressure in mid-northem Ordos Basin has attracted widespread attention in recent years.The reservoir pressure of Sulige area shows characteristics of basically... The origin and distribution of Upper Paleozoic reservoirs pressure in mid-northem Ordos Basin has attracted widespread attention in recent years.The reservoir pressure of Sulige area shows characteristics of basically subnormal pressure,and the reservoir pressure of Yulin area shows characteristics of basically normal hydrostatic pressure.In the sense of structural location, 展开更多
关键词 ORDOS BASIN sulige area Yulin area formation PRESSURE controlling FACTORS
下载PDF
Gas expansion caused by formation uplifting and its effects on tight gas accumulation:A case study of Sulige gas field in Ordos Basin,NW China
5
作者 LI Jun ZHAO Jingzhou +4 位作者 WEI Xinshan SHANG Xiaoqing WU Weitao WU Heyuan CHEN Mengna 《Petroleum Exploration and Development》 CSCD 2022年第6期1266-1281,共16页
Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive ... Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive analysis of geochemical,fluid inclusion and production data.The results indicate that gas volume expansion since the Late Cretaceous was the driving force for adjustment and secondary charging of tight sandstone gas reservoirs in the Sulige gas field of the Ordos Basin.The gas retained in the source rocks expanded in volume,resulting in gas re-expulsion,migration and secondary charging into reservoirs,while the gas volume expansion in the tight reservoirs caused the increase of gas saturation,gas-bearing area and gas column height,which worked together to increase the gas content of the reservoir and bring about large-scale gas accumulation events.The Sulige gas field had experienced a two-stage accumulation process,burial before the end of Early Cretaceous and uplifting since the Late Cretaceous.In the burial stage,natural gas was driven by hydrocarbon generation overpressure to migrate and accumulate,while in the uplifting stage,the gas volume expansion drove internal adjustment inside gas reservoirs and secondary charging to form new reservoirs.On the whole,the gas reservoir adjustment and secondary charging during uplifting stage is more significant in the eastern gas field than that in the west,which is favorable for forming gas-rich area. 展开更多
关键词 uplifting erosion and unloading abnormal pressure gas volume expansion adjustment of gas reservoir secondary charging two-stage accumulation sulige gas field Ordos Basin
下载PDF
Practice and understanding of sidetracking horizontal drilling in old wells in Sulige Gas Field, NW China
6
作者 ZHANG Jinwu WANG Guoyong +1 位作者 HE Kai YE Chenglin 《Petroleum Exploration and Development》 2019年第2期384-392,共9页
To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problem... To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problems such as leakage, collapse and sticking in slim-hole sidetracking, and difficult evaluation of remaining gas were gradually overcome, and a set of drilling and completion technology, well deployment optimization technology and geo-steering technology suitable for sidetracking horizontal wells in tight sandstone gas reservoirs have been worked out. By making full use of the old well, sidetracking horizontal wells can greatly reduce development costs, enhance the producing degree of inter-well remaining reserves, and get production 3-5 times of that of adjacent vertical wells.Its production effect is influenced by encountered sandstone length, the position of the horizontal segment in the reservoir, produced effective reservoir thickness, gas saturation, controlled reserves and fracturing effect, etc. Up to now, in Block Su10 and Su53, 12 sidetracking horizontal wells have been drilled, which have an average drilling cycle of 49 days, average horizontal section length of 689 m,average effective drilling ratio of 61.5%, average well-head pressure of 16.2 MPa, and daily output of 4.7×10~4 m^3 at the initial stage after production. By the end of 2017, the average yield increment was more than 1 000×10~4 m^3 with good effect. With the increase of low yield old wells, wells in the enrichment regions tend to be saturated and the rest gas-bearing areas are lower in grade, therefore, sidetracking horizontal well can be used for optimization of well pattern, well deployment mode and exploitation of remaining oil areas. 展开更多
关键词 sulige Gas Field SIDETRACKING horizontal WELL TIGHT SANDSTONE old WELL stimulation RESERVES producing
下载PDF
Technical strategies for effective development and gas recovery enhancement of a large tight gas field: A case study of Sulige gas field, Ordos Basin, NW China
7
作者 JI Guang JIA Ailin +4 位作者 MENG Dewei GUO Zhi WANG Guoting CHENG Lihua ZHAO Xin 《Petroleum Exploration and Development》 2019年第3期629-641,共13页
Based on the analysis of influencing factors of tight gas recovery and reservoir geological characteristics, the types of remaining tight gas reserves in the Sulige gas field are summarized from the perspective of res... Based on the analysis of influencing factors of tight gas recovery and reservoir geological characteristics, the types of remaining tight gas reserves in the Sulige gas field are summarized from the perspective of residual gas genesis to estimate residual gas reserves of different types and provide corresponding technical strategies for enhancing gas recovery. The residual gas reserves in the Sulige gas field can be divided into four types: well pattern uncontrollable, horizontal well missing, imperfect perforation, blocking zone in composite sandbodies. Among them, the uncontrolled remaining gas of well pattern and blocking zone in composite sandbodies are the main body for tapping potential and improving recovery factor, and well pattern infilling adjustment is the main means. Taking into account reservoir geological characteristics, production dynamic response and economic benefit requirements, four methods for infilling vertical well pattern, i.e., quantitative geological model method, dynamic controlled range of gas well method, production interference method and economic and technical index evaluation method, as well as a design method of combined vertical well pattern with horizontal well pattern are established. Under certain economic and technological conditions, the reasonable well pattern density of enrichment zone of gas field is proved to be 4 wells per square kilometers, which can increase the recovery rate of the gas field from 32% to about 50%. Meanwhile, five matching techniques for enhancing gas recovery aimed at interlayer undeveloped residual gas have been formed, including tapping potential of old wells, technological technology optimizing of new wells, rational production system optimizing, drainage and gas producing, and reducing waste production, which could increase the recovery rate for 5% based on well pattern infilling. The research results provide effective support for the long-term stable production of 230×108 m3/a of the Sulige gas field and production growth in the Changqing gas area. 展开更多
关键词 ORDOS Basin sulige GAS field TIGHT GAS REMAINING reserves well pattern INFILLING enhancing GAS recovery matching technologies
下载PDF
Eogenetic karst and its control on reservoirs in the Ordovician Majiagou Formation, eastern Sulige gas field, Ordos Basin, NW China
8
作者 XIE Kang TAN Xiucheng +6 位作者 FENG Min WANG Baobao ZHONG Shoukang YANG Mengying NIE Wancai QIAO Zhanfeng ZENG Wei 《Petroleum Exploration and Development》 2020年第6期1246-1261,共16页
To further ascertain the origin of the Ordovician Majiagou Formation reservoirs in the Ordos Basin,the M54-M51 sub-members of the Ordovician Majiagou Formation in the eastern Sulige gasfield of Ordos Basin were taken ... To further ascertain the origin of the Ordovician Majiagou Formation reservoirs in the Ordos Basin,the M54-M51 sub-members of the Ordovician Majiagou Formation in the eastern Sulige gasfield of Ordos Basin were taken as examples to analyze the vertical development characteristics of eogenetic karst and to discover the dissolution mechanism and its control on reservoirs through observation of a large number of cores and thin sections.According to detailed analysis of petrologic characteristics,the reservoir rock types include micritic dolomite,grain dolomite and microbialite which have mainly moldic pore,intergranular(dissolved)pore,and(dissolved)residual framework pore as main reservoir space respectively.The study area developed upward-shallowing sequences,with an exposure surface at the top of a single upward-shallowing sequence.The karst systems under the exposure surface had typical exposure characteristics of early dissolution and filling,indicating these reservoirs were related to the facies-controlled eogenetic karstification.With the increase of karstification intensity,the reservoirs became worse in physical properties. 展开更多
关键词 porous reservoir reservoir characteristics eogenetic karst DOLOMITE Majiagou Formation ORDOVICIAN sulige gas field Ordos Basin
下载PDF
Diagenetic mineralogy and its effect on the reservoir properties of the sandstones of the Permian of S120 block(Sulige gas field),Ordos Basin,NW China 被引量:1
9
作者 Qi Wan Ai-Ping Fan +1 位作者 Ren-Chao Yang Nils Lenhardt 《Journal of Palaeogeography》 SCIE CSCD 2022年第3期360-386,共27页
The characteristics of diagenetic minerals and their effects on reservoir quality of the tight sandstones of the Permian in Sulige gas field of the Ordos Basin were studied through observations on thin sections,scanni... The characteristics of diagenetic minerals and their effects on reservoir quality of the tight sandstones of the Permian in Sulige gas field of the Ordos Basin were studied through observations on thin sections,scanning electron microscopy,energy dispersive spectroscopy analysis and electron microprobe analysis.Diagenetic minerals in the Permian sandstones consist of illite,kaolinite,chlorite,siliceous and calcite cements.Large amounts of intercrystalline pores between kaolinite and illite provide channels for acidic fluids flow and thereby were conducive to the formation of clastic solution pores,intergranular solution pores and composite pores.Authigenic chlorite occurs in the form of three morphotypes as grain-coating,pore-lining and pore-filling.Grain-coating and pore-lining chlorite with different crystal shapes occur as coatings on the framework grains.Pore-filling chlorite precipitated as discrete flaky plates in pore spaces.Quartz microcrystals developed but quartz overgrowth did not develop because of the occurrence of porelining chlorite.This,in turn,led to the preservation of primary pores by occupying potential nucleation sites for quartz overgrowth and thereby preventing quartz microcrystals from merging into quartz overgrowth.This process is regarded as the most important for influencing the quality of the lithophysical properties.Calcite cement was mainly precipitated during a late diagenetic stage and has a negative effect on the reservoir quality.This study provides important insights into analyzing the relationship between diagenetic minerals and reservoir quality and the results are directly applicable to the exploration and development of tight sandstone reservoirs all over the world. 展开更多
关键词 Ordos basin sulige gas field PERMIAN Diagenetic processes Siliceous cement CHLORITE
原文传递
Gas accumulation conditions and key technologies for exploration & development of Sulige gasfield 被引量:3
10
作者 Jinhua Fu Liyong Fan +1 位作者 Xinshe Liu Daojun Huang 《Petroleum Research》 2018年第2期91-109,共19页
Up to now,the Sulige area in Ordos Basin has the favorable exploration area of 55×10^(3) km^(2),the total reserve of natural gas of nearly 6×10^(12) m^(3) and the proven reserve(including basic proven reserv... Up to now,the Sulige area in Ordos Basin has the favorable exploration area of 55×10^(3) km^(2),the total reserve of natural gas of nearly 6×10^(12) m^(3) and the proven reserve(including basic proven reserve)of 4.77×10^(12) m^(3),where the annual production of natural gas reaches 23×10^(9) m^(3),and the Sulige gasfield is the largest onshore natural gas field in China.The pay zone of the Sulige gasfield mainly is Member 8 of Shihezi Formation and Member 1 of Shanxi Formation of Permian which belong to the typical tight sandstone gas reservoir.The coal measure strata in Carboniferous Benxi Formation,Permian Taiyuan Formation and Shanxi Formation provide abundant gas sources for the Gulige gas reservoirs.An open-flow sedimentary model of lacustrine delta is developed,the gentle bottom,sand supply from multisource,strong hydrodynamic force and multi-period superposition control the distribution of largearea reservoir sand body.Lithology of the reservoir is the sandstone of the fluvial-delta facies,the physical property is poor and the heterogeneity is strong,the average porosity ranges from 4%to 12%and the average permeability varies from 0.01 to 1 mD.The gas reservoir is characterized by wide hydrocarbon generation,pervasive hydrocarbon charging,short-range migration and massive accumulation.The pressure coefficient of the gas reservoir ranges from 0.62 to 0.90,indicating the low-pressure gas reservoir,and the single-well yield is low.Full digital seismic technique in the desert area,nonlongitudinal seismic technique in the loess plateau,accurate logging evaluation technique,tight sand reservoir stimulation technology and horizontal well development technology are key technologies for exploration and development of Sulige gasfield. 展开更多
关键词 sulige gasfield Upper paleozoic Tight gas Accumulation condition Key technology
原文传递
Sulige Gas Field super project
11
作者 Wenrui HU Jingwei BAO Pengcheng JI 《Frontiers of Engineering Management》 2017年第3期379-384,共6页
Owner:Petro China Changqing Oilfield Company Design unit:Petro China Changqing Oilfield Company Construction unit:Petro China Changqing Oilfield Company,CNPC Chuanqing Drilling Engineering Company Limited,CNPC Greatwa... Owner:Petro China Changqing Oilfield Company Design unit:Petro China Changqing Oilfield Company Construction unit:Petro China Changqing Oilfield Company,CNPC Chuanqing Drilling Engineering Company Limited,CNPC Greatwall Drilling Company。 展开更多
关键词 sulige Gas Field super project
原文传递
Research on Determination of the Main Factors Influencing the Gas Well Post-Frac Productivity Prediction for Tight Sandstone Reservoirs Based on Factors Analysis
12
作者 Bi-Ci Jiang Bao-Zhi Pan +3 位作者 Hai-Tao Zhang Xiao-Ming ang Gang Chen Wen-Bin Liu 《Journal of Geoscience and Environment Protection》 2014年第3期60-65,共6页
With the characteristics such as low porosity, low permeability and low gas saturation, tight sandstone reservoirs almost have no natural capacity and need to be fractured (or fracturing) for productivity. Therefore, ... With the characteristics such as low porosity, low permeability and low gas saturation, tight sandstone reservoirs almost have no natural capacity and need to be fractured (or fracturing) for productivity. Therefore, fracturing capacity prediction is very necessary. However there were so many factors, and the relations between the factor and the post-frac productivity are complex. In this study, first of all factors are concluded from the gas well stable productivity formula, then I used factor analysis to look for the main factors from the logging parameters and fracturing parameters in SULIGE area. This study could provide basal references for the gas post-frac productivity prediction in tight sandstone reservoirs. 展开更多
关键词 FACTOR Analysis TIGHT SANDSTONE sulige Region Post-Frac PRODUCTIVITY
下载PDF
Ghangqing Gears up to Expand Gil and Gas Production
13
《China Oil & Gas》 CAS 2003年第3期38-40,共3页
China's largest gas field confirmed in Changqing The experts from Reserves Appraisal Center of Minerals and Resources under State Land and Resources Ministry have recently approved the additional natural gas reser... China's largest gas field confirmed in Changqing The experts from Reserves Appraisal Center of Minerals and Resources under State Land and Resources Ministry have recently approved the additional natural gas reserves of 313.177 billion cubic meters of Sulige Gas Field submitted by PetroChina Changqing Oil Field Company.Therefore, the proven gas in place of Sulige Gas Field has been accumulated to 533.625 billion cubic meters, the largest gas field in China at the present time. 展开更多
关键词 长庆油田 sulige气田 产量 油气勘探 销售额 国际合作
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部