Traffic simulation can help to evaluate the impact of different mobility behaviors on the traffic flow from safety, efficiency, and environmental views. The objective of this paper is to extend the SUMO (Simulation of...Traffic simulation can help to evaluate the impact of different mobility behaviors on the traffic flow from safety, efficiency, and environmental views. The objective of this paper is to extend the SUMO (Simulation of Urban Mobility) road traffic simulator to model and evaluate the impact of motorcycles mobility on vehicular traffic. First, we go through diverse mobility aspects and models for motorcycles in SUMO. Later, we opt for the most suitable mobility models of motorcycles. Finally, the impact of motorcycle mobility on different kinds of vehicles is investigated in terms of environment, fuel consumption, velocity and travel time. The result of modeling and evaluation shows that based on the mobility model of the motorcycle, vehicular traffic flow can be enhanced or deteriorated.展开更多
近年来深度强化学习作为一种高效可靠的机器学习方法被广泛应用在交通信号控制领域。目前,现有交通信号配时方法通常忽略了特殊车辆(例如救护车、消防车等)的优先通行;此外,基于传统深度强化学习的信号配时方法优化目标较为单一,导致其...近年来深度强化学习作为一种高效可靠的机器学习方法被广泛应用在交通信号控制领域。目前,现有交通信号配时方法通常忽略了特殊车辆(例如救护车、消防车等)的优先通行;此外,基于传统深度强化学习的信号配时方法优化目标较为单一,导致其在复杂交通场景中性能不佳。针对上述问题,基于Double DQN提出一种融合特殊车辆优先通行的双模式多目标信号配时方法(Dual-mode Multi-objective signal timing method based on Double DQN,DMDD),以提高不同交通场景下路口的通行效率。该方法首先基于路口的饱和状态选择信号控制模式,特殊车辆在紧急控制模式下被赋予更高的通行权重,有利于其更快通过路口;接着针对等待时长、队列长度和CO 2排放量3个指标分别设计神经网络进行奖励计算;最后利用Double DQN进行最优信号相位的选择,通过灵活切换信号相位以提升通行效率。基于SUMO的实验结果表明,DMDD与对比方法相比能有效缩短路口处特殊车辆的等待时长、队列长度和CO 2排放量,特殊车辆能够更快通过路口,有效地提高了通行效率。展开更多
The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics.As urbanization has slowed down in most megacities,improved urban growth modeling with minor changes h...The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics.As urbanization has slowed down in most megacities,improved urban growth modeling with minor changes has become a crucial open issue for these cities.Most existing models are based on stationary factors and spatial proximity,which are unlikely to depict spatial connectivity between regions.This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation.Specifically,the gravity model,which considers both the scale and distance effects of geographical locations within cities,is employed to characterize the connection between land areas using individual trajectory data from a macro perspective.It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata(ANN-CA)for urban growth modeling in Beijing from 2013 to 2016.The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60%improvement in Cohen’s Kappa coefficient and a 0.41%improvement in the figure of merit.In addition,the improvements are even more significant in districts with strong relationships with the central area of Beijing.For example,we find that the Kappa coefficients in three districts(Chaoyang,Daxing,and Shunyi)are considerably higher by more than 2.00%,suggesting the possible existence of a positive link between intense human interaction and urban growth.This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation,helping us to better understand the human-land relationship.展开更多
车载网是一种以车辆为通信节点的无线自组织网络,旨在实现车与车、车与基础设施之间的数据通信。车辆的高速移动性易引起网络拓扑结构的变化,进而降低数据包的传递率和路由协议的工作效率,甚至导致信道中断。目前,对于车载网通信协议和...车载网是一种以车辆为通信节点的无线自组织网络,旨在实现车与车、车与基础设施之间的数据通信。车辆的高速移动性易引起网络拓扑结构的变化,进而降低数据包的传递率和路由协议的工作效率,甚至导致信道中断。目前,对于车载网通信协议和应用的研究主要借助仿真平台模拟实现,平台内嵌的车辆移动模型性能对协议的分析和研究至关重要。首先,对Simulation of Urban Mobility(SUMO)平台下常用的6种车辆跟驰模型进行了详细的描述;其次,分析并引入影响移动模型性能最明显的3种因素;最终,依托城市道路交通环境,通过设置不同的模拟场景对比分析了在不同跟驰模型作用下的车辆密度、车辆平均速度和道路占用率3个指标。详实的实验结果表明,Krauss模型具有最优异的性能。此外,通过仔细观察单个车辆的跟驰行为从微观上揭示了各模型的工作原理。展开更多
文摘Traffic simulation can help to evaluate the impact of different mobility behaviors on the traffic flow from safety, efficiency, and environmental views. The objective of this paper is to extend the SUMO (Simulation of Urban Mobility) road traffic simulator to model and evaluate the impact of motorcycles mobility on vehicular traffic. First, we go through diverse mobility aspects and models for motorcycles in SUMO. Later, we opt for the most suitable mobility models of motorcycles. Finally, the impact of motorcycle mobility on different kinds of vehicles is investigated in terms of environment, fuel consumption, velocity and travel time. The result of modeling and evaluation shows that based on the mobility model of the motorcycle, vehicular traffic flow can be enhanced or deteriorated.
文摘近年来深度强化学习作为一种高效可靠的机器学习方法被广泛应用在交通信号控制领域。目前,现有交通信号配时方法通常忽略了特殊车辆(例如救护车、消防车等)的优先通行;此外,基于传统深度强化学习的信号配时方法优化目标较为单一,导致其在复杂交通场景中性能不佳。针对上述问题,基于Double DQN提出一种融合特殊车辆优先通行的双模式多目标信号配时方法(Dual-mode Multi-objective signal timing method based on Double DQN,DMDD),以提高不同交通场景下路口的通行效率。该方法首先基于路口的饱和状态选择信号控制模式,特殊车辆在紧急控制模式下被赋予更高的通行权重,有利于其更快通过路口;接着针对等待时长、队列长度和CO 2排放量3个指标分别设计神经网络进行奖励计算;最后利用Double DQN进行最优信号相位的选择,通过灵活切换信号相位以提升通行效率。基于SUMO的实验结果表明,DMDD与对比方法相比能有效缩短路口处特殊车辆的等待时长、队列长度和CO 2排放量,特殊车辆能够更快通过路口,有效地提高了通行效率。
基金Wuhan University“351”Talent Plan Teaching Position ProjectGuangdong-Hong Kong-Macao Joint Laboratory Program of the 2020 Guangdong New Innovative Strategic Research Fund from Guangdong Science and Technology Department,No.2020B1212030009。
文摘The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics.As urbanization has slowed down in most megacities,improved urban growth modeling with minor changes has become a crucial open issue for these cities.Most existing models are based on stationary factors and spatial proximity,which are unlikely to depict spatial connectivity between regions.This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation.Specifically,the gravity model,which considers both the scale and distance effects of geographical locations within cities,is employed to characterize the connection between land areas using individual trajectory data from a macro perspective.It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata(ANN-CA)for urban growth modeling in Beijing from 2013 to 2016.The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60%improvement in Cohen’s Kappa coefficient and a 0.41%improvement in the figure of merit.In addition,the improvements are even more significant in districts with strong relationships with the central area of Beijing.For example,we find that the Kappa coefficients in three districts(Chaoyang,Daxing,and Shunyi)are considerably higher by more than 2.00%,suggesting the possible existence of a positive link between intense human interaction and urban growth.This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation,helping us to better understand the human-land relationship.
文摘车载网是一种以车辆为通信节点的无线自组织网络,旨在实现车与车、车与基础设施之间的数据通信。车辆的高速移动性易引起网络拓扑结构的变化,进而降低数据包的传递率和路由协议的工作效率,甚至导致信道中断。目前,对于车载网通信协议和应用的研究主要借助仿真平台模拟实现,平台内嵌的车辆移动模型性能对协议的分析和研究至关重要。首先,对Simulation of Urban Mobility(SUMO)平台下常用的6种车辆跟驰模型进行了详细的描述;其次,分析并引入影响移动模型性能最明显的3种因素;最终,依托城市道路交通环境,通过设置不同的模拟场景对比分析了在不同跟驰模型作用下的车辆密度、车辆平均速度和道路占用率3个指标。详实的实验结果表明,Krauss模型具有最优异的性能。此外,通过仔细观察单个车辆的跟驰行为从微观上揭示了各模型的工作原理。